{"title":"基于人工神经网络的UVSI输变电系统离线电压安全评估","authors":"K. Chakraborty, Gitanjali Saha","doi":"10.1109/ICICPI.2016.7859694","DOIUrl":null,"url":null,"abstract":"Coming days are becoming a much challenging task for the power system researchers due to the anomalous increase in the load demand with the existing system. As a result there exists a discordant between the transmission and generation framework which is severely pressurizing the power utilities. In this paper a quick and efficient methodology has been proposed to identify the most sensitive or susceptible regions in any power system network. The technique used in this paper comprises of correlation of a multi-bus power system network to an equivalent two-bus network along with the application of Artificial neural network(ANN) Architecture with training algorithm for online monitoring of voltage security of the system under all multiple exigencies which makes it more flexible. A fast voltage stability indicator has been proposed known as Unified Voltage Stability Indicator (UVSI) which is used as a substratal apparatus for the assessment of the voltage collapse point in a IEEE 30-bus power system in combination with the Feed Forward Neural Network (FFNN) to establish the accuracy of the status of the system for different contingency configurations.","PeriodicalId":6501,"journal":{"name":"2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI)","volume":"24 1","pages":"158-162"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Off-line voltage security assessment of power transmission systems using UVSI through artificial neural network\",\"authors\":\"K. Chakraborty, Gitanjali Saha\",\"doi\":\"10.1109/ICICPI.2016.7859694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coming days are becoming a much challenging task for the power system researchers due to the anomalous increase in the load demand with the existing system. As a result there exists a discordant between the transmission and generation framework which is severely pressurizing the power utilities. In this paper a quick and efficient methodology has been proposed to identify the most sensitive or susceptible regions in any power system network. The technique used in this paper comprises of correlation of a multi-bus power system network to an equivalent two-bus network along with the application of Artificial neural network(ANN) Architecture with training algorithm for online monitoring of voltage security of the system under all multiple exigencies which makes it more flexible. A fast voltage stability indicator has been proposed known as Unified Voltage Stability Indicator (UVSI) which is used as a substratal apparatus for the assessment of the voltage collapse point in a IEEE 30-bus power system in combination with the Feed Forward Neural Network (FFNN) to establish the accuracy of the status of the system for different contingency configurations.\",\"PeriodicalId\":6501,\"journal\":{\"name\":\"2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI)\",\"volume\":\"24 1\",\"pages\":\"158-162\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICPI.2016.7859694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICPI.2016.7859694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Off-line voltage security assessment of power transmission systems using UVSI through artificial neural network
Coming days are becoming a much challenging task for the power system researchers due to the anomalous increase in the load demand with the existing system. As a result there exists a discordant between the transmission and generation framework which is severely pressurizing the power utilities. In this paper a quick and efficient methodology has been proposed to identify the most sensitive or susceptible regions in any power system network. The technique used in this paper comprises of correlation of a multi-bus power system network to an equivalent two-bus network along with the application of Artificial neural network(ANN) Architecture with training algorithm for online monitoring of voltage security of the system under all multiple exigencies which makes it more flexible. A fast voltage stability indicator has been proposed known as Unified Voltage Stability Indicator (UVSI) which is used as a substratal apparatus for the assessment of the voltage collapse point in a IEEE 30-bus power system in combination with the Feed Forward Neural Network (FFNN) to establish the accuracy of the status of the system for different contingency configurations.