{"title":"开发具有可编程缺陷的标准样品,用于评估7纳米及更小节点的图案检测工具","authors":"S. Iida, T. Nagai, T. Uchiyama","doi":"10.1117/1.JMM.18.3.033503","DOIUrl":null,"url":null,"abstract":"Abstract. Background: Continued shrinkage of pattern size has caused difficulties in detecting small defects. Multibeam scanning electron microscopy (SEM) is a potential method for pattern inspection below 7-nm node. Performance of the tool depends on charge control, resolution, and defect detection capability. Aim: The goal of this study is to develop a method for evaluating the performance of multibeam SEM for 7-nm nodes. Approach: By developing various standard samples with programmed defects (PDs) on 12 in. Si wafer, we evaluate the performance of multibeam SEM. Results: The first wafer had line and space (LS) patterns and PDs with varying contrast. A second wafer had various shaped small PDs, ∼5 nm in size in 16- to 12-nm half-pitch LS patterns. A third wafer with extremely small PDs of around 1 nm was fabricated in LS patterns with ultralow line-edge roughness (LER) of less than 1 nm. The first wafer was effective for charge control, whereas second and third wafer confirms resolution and defect detection capability. Conclusions: A set of minimum three standard wafer samples is effective to confirm the performance of multibeam SEM for below 7-nm nodes. Besides, we proposed a method to verify the LER values measured by a critical-dimension SEM.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"14 1","pages":"033503 - 033503"},"PeriodicalIF":1.5000,"publicationDate":"2019-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Development of standard samples with programmed defects for evaluation of pattern inspection tools for 7-nm and smaller nodes\",\"authors\":\"S. Iida, T. Nagai, T. Uchiyama\",\"doi\":\"10.1117/1.JMM.18.3.033503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Background: Continued shrinkage of pattern size has caused difficulties in detecting small defects. Multibeam scanning electron microscopy (SEM) is a potential method for pattern inspection below 7-nm node. Performance of the tool depends on charge control, resolution, and defect detection capability. Aim: The goal of this study is to develop a method for evaluating the performance of multibeam SEM for 7-nm nodes. Approach: By developing various standard samples with programmed defects (PDs) on 12 in. Si wafer, we evaluate the performance of multibeam SEM. Results: The first wafer had line and space (LS) patterns and PDs with varying contrast. A second wafer had various shaped small PDs, ∼5 nm in size in 16- to 12-nm half-pitch LS patterns. A third wafer with extremely small PDs of around 1 nm was fabricated in LS patterns with ultralow line-edge roughness (LER) of less than 1 nm. The first wafer was effective for charge control, whereas second and third wafer confirms resolution and defect detection capability. Conclusions: A set of minimum three standard wafer samples is effective to confirm the performance of multibeam SEM for below 7-nm nodes. Besides, we proposed a method to verify the LER values measured by a critical-dimension SEM.\",\"PeriodicalId\":16522,\"journal\":{\"name\":\"Journal of Micro/Nanolithography, MEMS, and MOEMS\",\"volume\":\"14 1\",\"pages\":\"033503 - 033503\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micro/Nanolithography, MEMS, and MOEMS\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMM.18.3.033503\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro/Nanolithography, MEMS, and MOEMS","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JMM.18.3.033503","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Development of standard samples with programmed defects for evaluation of pattern inspection tools for 7-nm and smaller nodes
Abstract. Background: Continued shrinkage of pattern size has caused difficulties in detecting small defects. Multibeam scanning electron microscopy (SEM) is a potential method for pattern inspection below 7-nm node. Performance of the tool depends on charge control, resolution, and defect detection capability. Aim: The goal of this study is to develop a method for evaluating the performance of multibeam SEM for 7-nm nodes. Approach: By developing various standard samples with programmed defects (PDs) on 12 in. Si wafer, we evaluate the performance of multibeam SEM. Results: The first wafer had line and space (LS) patterns and PDs with varying contrast. A second wafer had various shaped small PDs, ∼5 nm in size in 16- to 12-nm half-pitch LS patterns. A third wafer with extremely small PDs of around 1 nm was fabricated in LS patterns with ultralow line-edge roughness (LER) of less than 1 nm. The first wafer was effective for charge control, whereas second and third wafer confirms resolution and defect detection capability. Conclusions: A set of minimum three standard wafer samples is effective to confirm the performance of multibeam SEM for below 7-nm nodes. Besides, we proposed a method to verify the LER values measured by a critical-dimension SEM.