{"title":"流体流过旋转气缸时阻力和升力的详细讨论","authors":"G. Sagar Kumar Achary, S. P. Khadanga","doi":"10.37896/ymer21.07/b4","DOIUrl":null,"url":null,"abstract":"The thesis discusses how the hydrodynamics of flow are affected by the Reynolds number and rotational speed around bodies. The experiment considers the Newtonian fluid flow over two cylinders placed side by side, results obtained from the numerical simulation was carried out by combination of various parameters in the range of 0 ≤ α a(non-dimensional rotational velocity) ≤ 4, 10 ≤ Re ≤ 40 , G=4 (gap between cylinder / diameter). The domain size taken into account was 240m. The simulation is carried out on each of these variables using ANSYS 16.0. While Fluent is used for the remaining of the simulation, Workbench is used for the geometry-related tasks. At each of these combinations of Reynolds Number and angular velocity, the value of the drag coefficient and lift coefficient is determined.. The results of the analysis provide a clear understanding of the intricate interaction between the cylinders' drag and lift coefficients, rotational velocity, and Reynolds number. Keywords: Reynolds number, dimensionless rotational velocity, Newtonian fluid ,Drag-lift Coefficient","PeriodicalId":23848,"journal":{"name":"YMER Digital","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A detailed review of drag Force and lift force when fluid flow over rotating cylinders\",\"authors\":\"G. Sagar Kumar Achary, S. P. Khadanga\",\"doi\":\"10.37896/ymer21.07/b4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The thesis discusses how the hydrodynamics of flow are affected by the Reynolds number and rotational speed around bodies. The experiment considers the Newtonian fluid flow over two cylinders placed side by side, results obtained from the numerical simulation was carried out by combination of various parameters in the range of 0 ≤ α a(non-dimensional rotational velocity) ≤ 4, 10 ≤ Re ≤ 40 , G=4 (gap between cylinder / diameter). The domain size taken into account was 240m. The simulation is carried out on each of these variables using ANSYS 16.0. While Fluent is used for the remaining of the simulation, Workbench is used for the geometry-related tasks. At each of these combinations of Reynolds Number and angular velocity, the value of the drag coefficient and lift coefficient is determined.. The results of the analysis provide a clear understanding of the intricate interaction between the cylinders' drag and lift coefficients, rotational velocity, and Reynolds number. Keywords: Reynolds number, dimensionless rotational velocity, Newtonian fluid ,Drag-lift Coefficient\",\"PeriodicalId\":23848,\"journal\":{\"name\":\"YMER Digital\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"YMER Digital\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37896/ymer21.07/b4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"YMER Digital","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37896/ymer21.07/b4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A detailed review of drag Force and lift force when fluid flow over rotating cylinders
The thesis discusses how the hydrodynamics of flow are affected by the Reynolds number and rotational speed around bodies. The experiment considers the Newtonian fluid flow over two cylinders placed side by side, results obtained from the numerical simulation was carried out by combination of various parameters in the range of 0 ≤ α a(non-dimensional rotational velocity) ≤ 4, 10 ≤ Re ≤ 40 , G=4 (gap between cylinder / diameter). The domain size taken into account was 240m. The simulation is carried out on each of these variables using ANSYS 16.0. While Fluent is used for the remaining of the simulation, Workbench is used for the geometry-related tasks. At each of these combinations of Reynolds Number and angular velocity, the value of the drag coefficient and lift coefficient is determined.. The results of the analysis provide a clear understanding of the intricate interaction between the cylinders' drag and lift coefficients, rotational velocity, and Reynolds number. Keywords: Reynolds number, dimensionless rotational velocity, Newtonian fluid ,Drag-lift Coefficient