火花等离子烧结铝基原位金属基复合材料的合成与表征

B. Mallik, K. Sikdar, D. Roy
{"title":"火花等离子烧结铝基原位金属基复合材料的合成与表征","authors":"B. Mallik, K. Sikdar, D. Roy","doi":"10.5539/JMSR.V7N1P14","DOIUrl":null,"url":null,"abstract":"Fe-aluminide and alumina reinforced in-situ aluminium based metal matrix composite was prepared by spark plasma sintering (SPS) of aluminium and nanosized Fe2O3 powder mixture. In-situ reinforcements were formed during SPS by exothermal reaction between aluminium and nano-size Fe2O3 particle. The thermal characteristics of the in-situ reaction were studied by differential scanning calorimetry (DSC). Field Emission Scanning Electron Microscopy (FESEM) along with the Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) techniques were used to study the microstructural architecture of the composites as a function of SPS temperature and the volume fraction of reinforcement. Microhardness measurement of the composite shows significant increase in hardness with increase in SPS temperature and volume fraction of secondary phase.","PeriodicalId":16111,"journal":{"name":"Journal of Materials Science Research","volume":"103 1","pages":"14"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of Aluminium Base in situ Metal Matrix Composites by Spark Plasma Sintering\",\"authors\":\"B. Mallik, K. Sikdar, D. Roy\",\"doi\":\"10.5539/JMSR.V7N1P14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fe-aluminide and alumina reinforced in-situ aluminium based metal matrix composite was prepared by spark plasma sintering (SPS) of aluminium and nanosized Fe2O3 powder mixture. In-situ reinforcements were formed during SPS by exothermal reaction between aluminium and nano-size Fe2O3 particle. The thermal characteristics of the in-situ reaction were studied by differential scanning calorimetry (DSC). Field Emission Scanning Electron Microscopy (FESEM) along with the Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) techniques were used to study the microstructural architecture of the composites as a function of SPS temperature and the volume fraction of reinforcement. Microhardness measurement of the composite shows significant increase in hardness with increase in SPS temperature and volume fraction of secondary phase.\",\"PeriodicalId\":16111,\"journal\":{\"name\":\"Journal of Materials Science Research\",\"volume\":\"103 1\",\"pages\":\"14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/JMSR.V7N1P14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/JMSR.V7N1P14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用火花等离子烧结(SPS)技术,将铝和纳米Fe2O3粉末混合制备了fe -铝化物和氧化铝增强原位铝基金属基复合材料。在SPS过程中,铝与纳米Fe2O3颗粒通过放热反应形成原位增强。采用差示扫描量热法(DSC)研究了原位反应的热特性。利用场发射扫描电子显微镜(FESEM)、能谱仪(EDS)和x射线衍射仪(XRD)研究了复合材料的微观结构与SPS温度和增强体分数的关系。显微硬度测试表明,随着SPS温度的升高和二次相体积分数的增加,复合材料的硬度显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and Characterization of Aluminium Base in situ Metal Matrix Composites by Spark Plasma Sintering
Fe-aluminide and alumina reinforced in-situ aluminium based metal matrix composite was prepared by spark plasma sintering (SPS) of aluminium and nanosized Fe2O3 powder mixture. In-situ reinforcements were formed during SPS by exothermal reaction between aluminium and nano-size Fe2O3 particle. The thermal characteristics of the in-situ reaction were studied by differential scanning calorimetry (DSC). Field Emission Scanning Electron Microscopy (FESEM) along with the Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) techniques were used to study the microstructural architecture of the composites as a function of SPS temperature and the volume fraction of reinforcement. Microhardness measurement of the composite shows significant increase in hardness with increase in SPS temperature and volume fraction of secondary phase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural and Electronic Impact on Various Substrates of TiO2 Thin Film Using Sol-Gel Spin Coating Method On the Onset of Plasticity: Determination of Strength and Ductility Investigation to enhanced Physical and Mechanical Properties of Road Pavement in Asphalt Incorporating Low-Density Waste Plastic Bags Reviewer acknowledgements for Journal of Materials Science Research, Vol. 12, No. 2 Electron Theory of Metals - Answers to Unsolved Problems/Questions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1