关于从10k的冰中光脱离的水的核自旋异构体比和宇宙中水的起源;关于从10k的冰中光脱离的水的核自旋异构体比和宇宙中水的起源;orto -to-para Ratio of Water Photodesorbed from Ice at 10k and the Origin of Interstellar Water

Tetsuya Hama, Akira Kouchi, Naoki Watanabe
{"title":"关于从10k的冰中光脱离的水的核自旋异构体比和宇宙中水的起源;关于从10k的冰中光脱离的水的核自旋异构体比和宇宙中水的起源;orto -to-para Ratio of Water Photodesorbed from Ice at 10k and the Origin of Interstellar Water","authors":"Tetsuya Hama, Akira Kouchi, Naoki Watanabe","doi":"10.3131/JVSJ2.60.264","DOIUrl":null,"url":null,"abstract":"Chemistry of interstellar H2O is essential for understanding the formation of stars and planetary systems because of the ubiquity of H2O in space. The abundance ratio of nuclear spin isomers (the ortho-to-para ratio, OPR) can be a key for interstellar water chemistry, when assuming that the OPR desorbed from ice is closely related to the ice formation temperature. However, the above assumption has not been experimentally validated. Here, we report that H2O photodesorbed from ice at 10 K shows a statistical OPR of 3, even when the ice is produced in situ by hydrogenation of O2, a known formation process of interstellar H2O. This invalidates the hypothesis for relation between OPR and temperature. Reinterpretation of previous observations is necessary to improve our understanding of interstellar chemistry and the formation of the solar system and comets.","PeriodicalId":17344,"journal":{"name":"Journal of The Vacuum Society of Japan","volume":"3 1","pages":"264-274"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"10 Kの氷から光脱離する水の核スピン異性体比と宇宙の水の起源について;10 Kの氷から光脱離する水の核スピン異性体比と宇宙の水の起源について;Ortho-to-para Ratio of Water Photodesorbed from Ice at 10 K and the Origin of Interstellar Water\",\"authors\":\"Tetsuya Hama, Akira Kouchi, Naoki Watanabe\",\"doi\":\"10.3131/JVSJ2.60.264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemistry of interstellar H2O is essential for understanding the formation of stars and planetary systems because of the ubiquity of H2O in space. The abundance ratio of nuclear spin isomers (the ortho-to-para ratio, OPR) can be a key for interstellar water chemistry, when assuming that the OPR desorbed from ice is closely related to the ice formation temperature. However, the above assumption has not been experimentally validated. Here, we report that H2O photodesorbed from ice at 10 K shows a statistical OPR of 3, even when the ice is produced in situ by hydrogenation of O2, a known formation process of interstellar H2O. This invalidates the hypothesis for relation between OPR and temperature. Reinterpretation of previous observations is necessary to improve our understanding of interstellar chemistry and the formation of the solar system and comets.\",\"PeriodicalId\":17344,\"journal\":{\"name\":\"Journal of The Vacuum Society of Japan\",\"volume\":\"3 1\",\"pages\":\"264-274\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Vacuum Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3131/JVSJ2.60.264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Vacuum Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3131/JVSJ2.60.264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

星际水的化学性质对于理解恒星和行星系统的形成至关重要,因为水在太空中无处不在。当假设从冰中解吸的OPR与冰的形成温度密切相关时,核自旋异构体的丰度比(正对位比,OPR)可以成为星际水化学的关键。然而,上述假设尚未得到实验验证。在这里,我们报告了在10 K下从冰中光解吸的H2O显示出统计OPR为3,即使冰是通过O2的氢化产生的,这是一种已知的星际水的形成过程。这使得OPR与温度关系的假设失效。重新解释以前的观测结果对于提高我们对星际化学以及太阳系和彗星形成的理解是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
10 Kの氷から光脱離する水の核スピン異性体比と宇宙の水の起源について;10 Kの氷から光脱離する水の核スピン異性体比と宇宙の水の起源について;Ortho-to-para Ratio of Water Photodesorbed from Ice at 10 K and the Origin of Interstellar Water
Chemistry of interstellar H2O is essential for understanding the formation of stars and planetary systems because of the ubiquity of H2O in space. The abundance ratio of nuclear spin isomers (the ortho-to-para ratio, OPR) can be a key for interstellar water chemistry, when assuming that the OPR desorbed from ice is closely related to the ice formation temperature. However, the above assumption has not been experimentally validated. Here, we report that H2O photodesorbed from ice at 10 K shows a statistical OPR of 3, even when the ice is produced in situ by hydrogenation of O2, a known formation process of interstellar H2O. This invalidates the hypothesis for relation between OPR and temperature. Reinterpretation of previous observations is necessary to improve our understanding of interstellar chemistry and the formation of the solar system and comets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
半導体表面における光励起キャリアダイナミクスの時間・空間分解計測;半導体表面における光励起キャリアダイナミクスの時間・空間分解計測;Spatio-temporal Observation of Photogenerated Carrier Dynamics on a Semiconductor Surface Design of Advanced Functional ZnO Conductive Thin Films with Arc Plasma High Degree Reduction of Graphene Oxide toward a High Carrier Mobility Infrared Absorption Spectroscopy of Water Clusters Isolated in Cryomatrices プラズマ化学気相堆積におけるグラフェン成長過程の偏光解析モニタリング;プラズマ化学気相堆積におけるグラフェン成長過程の偏光解析モニタリング;Ellipsometric Monitoring of First Stages of Graphene Growth in Plasma-Enhanced Chemical Vapor Deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1