了解SiC MOSFET的开关损耗:迈向无损开关

Xuan Li, Liqi Zhang, Suxuan Guo, Yang Lei, A. Huang, Bo Zhang
{"title":"了解SiC MOSFET的开关损耗:迈向无损开关","authors":"Xuan Li, Liqi Zhang, Suxuan Guo, Yang Lei, A. Huang, Bo Zhang","doi":"10.1109/WIPDA.2015.7369295","DOIUrl":null,"url":null,"abstract":"Due to the limitation in circuit measurements using current and voltage probes, the conventional ways of measuring switching losses lack the physical insight of the complicated witching process in power devices such as the SiC power MOSFET. This paper seeks to have a better understanding of the dynamic turn-on and turn-off processes of the SiC power MOSFET. Using a detailed finite element simulation model in TCAD Sentaurus, a better and accurate understanding of switching losses in SiC MOSFET is obtained. The physical insights during switching process, as well as the impact of gate resistance and common source parasitic inductance are studied. Based on the results obtained in this study, SiC MOSFET can achieve lossless switching for both turn-on and turn-off if certain conditions of its gate drive circuit and load current conditions are met. Therefore this analysis provides a theoretical guidance for high voltage SiC MOSFETs to be used in extremely high switching frequency applications.","PeriodicalId":6538,"journal":{"name":"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","volume":"76 1","pages":"257-262"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"Understanding switching losses in SiC MOSFET: Toward lossless switching\",\"authors\":\"Xuan Li, Liqi Zhang, Suxuan Guo, Yang Lei, A. Huang, Bo Zhang\",\"doi\":\"10.1109/WIPDA.2015.7369295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the limitation in circuit measurements using current and voltage probes, the conventional ways of measuring switching losses lack the physical insight of the complicated witching process in power devices such as the SiC power MOSFET. This paper seeks to have a better understanding of the dynamic turn-on and turn-off processes of the SiC power MOSFET. Using a detailed finite element simulation model in TCAD Sentaurus, a better and accurate understanding of switching losses in SiC MOSFET is obtained. The physical insights during switching process, as well as the impact of gate resistance and common source parasitic inductance are studied. Based on the results obtained in this study, SiC MOSFET can achieve lossless switching for both turn-on and turn-off if certain conditions of its gate drive circuit and load current conditions are met. Therefore this analysis provides a theoretical guidance for high voltage SiC MOSFETs to be used in extremely high switching frequency applications.\",\"PeriodicalId\":6538,\"journal\":{\"name\":\"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)\",\"volume\":\"76 1\",\"pages\":\"257-262\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIPDA.2015.7369295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIPDA.2015.7369295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

由于使用电流和电压探头测量电路的限制,传统的测量开关损耗的方法缺乏对功率器件(如SiC功率MOSFET)中复杂开关过程的物理洞察力。本文旨在更好地理解SiC功率MOSFET的动态导通和关断过程。利用TCAD Sentaurus中详细的有限元仿真模型,可以更好、更准确地理解SiC MOSFET的开关损耗。研究了开关过程中的物理特性,以及栅极电阻和共源寄生电感的影响。根据本研究的结果,SiC MOSFET在满足其栅极驱动电路和负载电流的一定条件下,可以实现导通和关断的无损切换。因此,该分析为高压SiC mosfet用于极高开关频率的应用提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding switching losses in SiC MOSFET: Toward lossless switching
Due to the limitation in circuit measurements using current and voltage probes, the conventional ways of measuring switching losses lack the physical insight of the complicated witching process in power devices such as the SiC power MOSFET. This paper seeks to have a better understanding of the dynamic turn-on and turn-off processes of the SiC power MOSFET. Using a detailed finite element simulation model in TCAD Sentaurus, a better and accurate understanding of switching losses in SiC MOSFET is obtained. The physical insights during switching process, as well as the impact of gate resistance and common source parasitic inductance are studied. Based on the results obtained in this study, SiC MOSFET can achieve lossless switching for both turn-on and turn-off if certain conditions of its gate drive circuit and load current conditions are met. Therefore this analysis provides a theoretical guidance for high voltage SiC MOSFETs to be used in extremely high switching frequency applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent developments in GaN-based optical rapid switching semiconductor devices Loss analysis of GaN devices in an isolated bidirectional DC-DC converter Monolithic integrated quasi-normally-off gate driver and 600 V GaN-on-Si HEMT A 1 MHz eGaN FET based 4-switch buck-boost converter for automotive applications Reliability and failure physics of GaN HEMT, MIS-HEMT and p-gate HEMTs for power switching applications: Parasitic effects and degradation due to deep level effects and time-dependent breakdown phenomena
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1