E. Freeman, A. Kar, N. Shukla, R. Misra, R. Engel-Herbert, D. Schlom, V. Gopalan, K. Rabe, S. Datta
{"title":"基于金属-绝缘子过渡(MIT)隧道结的表征与建模","authors":"E. Freeman, A. Kar, N. Shukla, R. Misra, R. Engel-Herbert, D. Schlom, V. Gopalan, K. Rabe, S. Datta","doi":"10.1109/DRC.2012.6257012","DOIUrl":null,"url":null,"abstract":"Continued physical scaling will reduce power dissipation primarily through the reduction in device capacitance; however, a far greater benefit would result if the CMOS FET could be replaced by a fundamentally new device scheme that operates under very low supply voltages. Recently, semiconductor based inter-band tunnel field effect transistors (TFET) have been explored due to their potential to achieve sub kBT/q steep switching swings, enabling low voltage operation. In this work, we explore the abrupt metal to insulator transition (MIT) of vanadium dioxide (VO2) based tunnel junction - a first step towards a correlated electron based steep switching TFET. As illustrated, the metal insulator transition MIT in materials with strong electron correlation can be utilized to modulate the tunnelling current by opening an energy gap around the Fermi level in the OFF-state, and a metal-insulator-metal tunnelling current by collapsing the gap in the ON-state.","PeriodicalId":6808,"journal":{"name":"70th Device Research Conference","volume":"93 1","pages":"243-244"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Characterization and modeling of metal-insulator transition (MIT) based tunnel junctions\",\"authors\":\"E. Freeman, A. Kar, N. Shukla, R. Misra, R. Engel-Herbert, D. Schlom, V. Gopalan, K. Rabe, S. Datta\",\"doi\":\"10.1109/DRC.2012.6257012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continued physical scaling will reduce power dissipation primarily through the reduction in device capacitance; however, a far greater benefit would result if the CMOS FET could be replaced by a fundamentally new device scheme that operates under very low supply voltages. Recently, semiconductor based inter-band tunnel field effect transistors (TFET) have been explored due to their potential to achieve sub kBT/q steep switching swings, enabling low voltage operation. In this work, we explore the abrupt metal to insulator transition (MIT) of vanadium dioxide (VO2) based tunnel junction - a first step towards a correlated electron based steep switching TFET. As illustrated, the metal insulator transition MIT in materials with strong electron correlation can be utilized to modulate the tunnelling current by opening an energy gap around the Fermi level in the OFF-state, and a metal-insulator-metal tunnelling current by collapsing the gap in the ON-state.\",\"PeriodicalId\":6808,\"journal\":{\"name\":\"70th Device Research Conference\",\"volume\":\"93 1\",\"pages\":\"243-244\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"70th Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2012.6257012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"70th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2012.6257012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization and modeling of metal-insulator transition (MIT) based tunnel junctions
Continued physical scaling will reduce power dissipation primarily through the reduction in device capacitance; however, a far greater benefit would result if the CMOS FET could be replaced by a fundamentally new device scheme that operates under very low supply voltages. Recently, semiconductor based inter-band tunnel field effect transistors (TFET) have been explored due to their potential to achieve sub kBT/q steep switching swings, enabling low voltage operation. In this work, we explore the abrupt metal to insulator transition (MIT) of vanadium dioxide (VO2) based tunnel junction - a first step towards a correlated electron based steep switching TFET. As illustrated, the metal insulator transition MIT in materials with strong electron correlation can be utilized to modulate the tunnelling current by opening an energy gap around the Fermi level in the OFF-state, and a metal-insulator-metal tunnelling current by collapsing the gap in the ON-state.