利用不同浮雕高度的环形光栅聚焦圆偏振和径向偏振超高斯光束的特性

IF 1.1 Q4 OPTICS Computer Optics Pub Date : 2022-08-01 DOI:10.18287/2412-6179-co-1131
D. Savelyev
{"title":"利用不同浮雕高度的环形光栅聚焦圆偏振和径向偏振超高斯光束的特性","authors":"D. Savelyev","doi":"10.18287/2412-6179-co-1131","DOIUrl":null,"url":null,"abstract":"The focusing features of a super-Gaussian beam, as well as Laguerre-super-Gaussian (1,0) modes with radial and circular polarizations on ring gratings (direct and inverse) with a variable height of individual relief rings were investigated in this paper. The change in the height of the relief from the maximum height in the center to the minimum at the edges of the element (direct ring grating) is considered and the reverse case, when the maximum height of the relief was at the edges and the minimum in the center (reverse ring grating). The comparison was carried out with the action of a diffractive axicon with a comparable grating period. Numerical simulation was carried out by the finite differences in the time domain method. It was shown that the direction of change in the height of the relief rings of elements significantly affects the diffraction pattern in the near zone. In particular, for a super-Gaussian beam, the use of a direct ring grating made it possible to reduce the size of the focal spot by 18.7% for radial polarization ('sigma'=5 μm), the use of a reverse ring grating led to a decrease in the focal spot by 36.9% ('sigma'=12.25 µm) in comparison with the action of a diffractive axicon. It was also shown in the paper that when the reverse ring grating is illuminated by the Laguerre-superGauss (1,0) mode with circular polarization, the formation of a narrow and extended region of reduced intensity on the optical axis (optical trap) is observed.","PeriodicalId":46692,"journal":{"name":"Computer Optics","volume":"29 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Peculiarities of focusing circularly and radially polarized super-Gaussian beams using ring gratings with varying relief height\",\"authors\":\"D. Savelyev\",\"doi\":\"10.18287/2412-6179-co-1131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The focusing features of a super-Gaussian beam, as well as Laguerre-super-Gaussian (1,0) modes with radial and circular polarizations on ring gratings (direct and inverse) with a variable height of individual relief rings were investigated in this paper. The change in the height of the relief from the maximum height in the center to the minimum at the edges of the element (direct ring grating) is considered and the reverse case, when the maximum height of the relief was at the edges and the minimum in the center (reverse ring grating). The comparison was carried out with the action of a diffractive axicon with a comparable grating period. Numerical simulation was carried out by the finite differences in the time domain method. It was shown that the direction of change in the height of the relief rings of elements significantly affects the diffraction pattern in the near zone. In particular, for a super-Gaussian beam, the use of a direct ring grating made it possible to reduce the size of the focal spot by 18.7% for radial polarization ('sigma'=5 μm), the use of a reverse ring grating led to a decrease in the focal spot by 36.9% ('sigma'=12.25 µm) in comparison with the action of a diffractive axicon. It was also shown in the paper that when the reverse ring grating is illuminated by the Laguerre-superGauss (1,0) mode with circular polarization, the formation of a narrow and extended region of reduced intensity on the optical axis (optical trap) is observed.\",\"PeriodicalId\":46692,\"journal\":{\"name\":\"Computer Optics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 8

摘要

本文研究了变高度凸轮环(正、反)环光栅上超高斯光束的聚焦特性,以及径向偏振和圆偏振的拉盖尔-超高斯(1,0)模式。考虑了浮雕的高度从中心的最大高度到边缘的最小高度的变化(正环形光栅),以及相反的情况,当浮雕的最大高度在边缘,最小高度在中心(反环形光栅)。比较是在具有可比光栅周期的衍射轴的作用下进行的。采用时域有限差分法进行了数值模拟。结果表明,元素浮雕环高度的变化方向对近区衍射图样有显著影响。特别地,对于超高斯光束,使用直接环形光栅可以使径向偏振('sigma'=5 μm)的焦斑尺寸减小18.7%,使用反向环形光栅与衍射轴的作用相比,焦斑尺寸减小36.9% ('sigma'=12.25 μm)。本文还表明,在圆偏振的拉盖尔-超高斯(1,0)模式下,反向环形光栅在光轴上形成了一个强度降低的狭窄扩展区域(光阱)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Peculiarities of focusing circularly and radially polarized super-Gaussian beams using ring gratings with varying relief height
The focusing features of a super-Gaussian beam, as well as Laguerre-super-Gaussian (1,0) modes with radial and circular polarizations on ring gratings (direct and inverse) with a variable height of individual relief rings were investigated in this paper. The change in the height of the relief from the maximum height in the center to the minimum at the edges of the element (direct ring grating) is considered and the reverse case, when the maximum height of the relief was at the edges and the minimum in the center (reverse ring grating). The comparison was carried out with the action of a diffractive axicon with a comparable grating period. Numerical simulation was carried out by the finite differences in the time domain method. It was shown that the direction of change in the height of the relief rings of elements significantly affects the diffraction pattern in the near zone. In particular, for a super-Gaussian beam, the use of a direct ring grating made it possible to reduce the size of the focal spot by 18.7% for radial polarization ('sigma'=5 μm), the use of a reverse ring grating led to a decrease in the focal spot by 36.9% ('sigma'=12.25 µm) in comparison with the action of a diffractive axicon. It was also shown in the paper that when the reverse ring grating is illuminated by the Laguerre-superGauss (1,0) mode with circular polarization, the formation of a narrow and extended region of reduced intensity on the optical axis (optical trap) is observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Optics
Computer Optics OPTICS-
CiteScore
4.20
自引率
10.00%
发文量
73
审稿时长
9 weeks
期刊介绍: The journal is intended for researchers and specialists active in the following research areas: Diffractive Optics; Information Optical Technology; Nanophotonics and Optics of Nanostructures; Image Analysis & Understanding; Information Coding & Security; Earth Remote Sensing Technologies; Hyperspectral Data Analysis; Numerical Methods for Optics and Image Processing; Intelligent Video Analysis. The journal "Computer Optics" has been published since 1987. Published 6 issues per year.
期刊最新文献
Six-wave interaction with double wavefront reversal in multimode waveguides with Kerr and thermal nonlinearities Generation and study of the synthetic brain electron microscopy dataset for segmentation purpose Gradient method for designing cascaded DOEs and its application in the problem of classifying handwritten digits Method of multilayer object sectioning based on a light scattering model Investigation of polarization transformations performed with a refractive bi-conical axicon using the FDTD method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1