ABEE:从生物医学文本文档中自动提取生物实体

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Technologies and Applications Pub Date : 2022-12-25 DOI:10.1108/dta-04-2022-0151
Ashutosh Kumar, Aakanksha Sharaff
{"title":"ABEE:从生物医学文本文档中自动提取生物实体","authors":"Ashutosh Kumar, Aakanksha Sharaff","doi":"10.1108/dta-04-2022-0151","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this study was to design a multitask learning model so that biomedical entities can be extracted without having any ambiguity from biomedical texts.Design/methodology/approachIn the proposed automated bio entity extraction (ABEE) model, a multitask learning model has been introduced with the combination of single-task learning models. Our model used Bidirectional Encoder Representations from Transformers to train the single-task learning model. Then combined model's outputs so that we can find the verity of entities from biomedical text.FindingsThe proposed ABEE model targeted unique gene/protein, chemical and disease entities from the biomedical text. The finding is more important in terms of biomedical research like drug finding and clinical trials. This research aids not only to reduce the effort of the researcher but also to reduce the cost of new drug discoveries and new treatments.Research limitations/implicationsAs such, there are no limitations with the model, but the research team plans to test the model with gigabyte of data and establish a knowledge graph so that researchers can easily estimate the entities of similar groups.Practical implicationsAs far as the practical implication concerned, the ABEE model will be helpful in various natural language processing task as in information extraction (IE), it plays an important role in the biomedical named entity recognition and biomedical relation extraction and also in the information retrieval task like literature-based knowledge discovery.Social implicationsDuring the COVID-19 pandemic, the demands for this type of our work increased because of the increase in the clinical trials at that time. If this type of research has been introduced previously, then it would have reduced the time and effort for new drug discoveries in this area.Originality/valueIn this work we proposed a novel multitask learning model that is capable to extract biomedical entities from the biomedical text without any ambiguity. The proposed model achieved state-of-the-art performance in terms of precision, recall and F1 score.","PeriodicalId":56156,"journal":{"name":"Data Technologies and Applications","volume":"30 1","pages":"222-244"},"PeriodicalIF":1.7000,"publicationDate":"2022-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ABEE: automated bio entity extraction from biomedical text documents\",\"authors\":\"Ashutosh Kumar, Aakanksha Sharaff\",\"doi\":\"10.1108/dta-04-2022-0151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe purpose of this study was to design a multitask learning model so that biomedical entities can be extracted without having any ambiguity from biomedical texts.Design/methodology/approachIn the proposed automated bio entity extraction (ABEE) model, a multitask learning model has been introduced with the combination of single-task learning models. Our model used Bidirectional Encoder Representations from Transformers to train the single-task learning model. Then combined model's outputs so that we can find the verity of entities from biomedical text.FindingsThe proposed ABEE model targeted unique gene/protein, chemical and disease entities from the biomedical text. The finding is more important in terms of biomedical research like drug finding and clinical trials. This research aids not only to reduce the effort of the researcher but also to reduce the cost of new drug discoveries and new treatments.Research limitations/implicationsAs such, there are no limitations with the model, but the research team plans to test the model with gigabyte of data and establish a knowledge graph so that researchers can easily estimate the entities of similar groups.Practical implicationsAs far as the practical implication concerned, the ABEE model will be helpful in various natural language processing task as in information extraction (IE), it plays an important role in the biomedical named entity recognition and biomedical relation extraction and also in the information retrieval task like literature-based knowledge discovery.Social implicationsDuring the COVID-19 pandemic, the demands for this type of our work increased because of the increase in the clinical trials at that time. If this type of research has been introduced previously, then it would have reduced the time and effort for new drug discoveries in this area.Originality/valueIn this work we proposed a novel multitask learning model that is capable to extract biomedical entities from the biomedical text without any ambiguity. The proposed model achieved state-of-the-art performance in terms of precision, recall and F1 score.\",\"PeriodicalId\":56156,\"journal\":{\"name\":\"Data Technologies and Applications\",\"volume\":\"30 1\",\"pages\":\"222-244\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Technologies and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/dta-04-2022-0151\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Technologies and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/dta-04-2022-0151","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在设计一个多任务学习模型,使生物医学实体能够在没有歧义的情况下从生物医学文本中提取出来。设计/方法/方法在提出的自动生物实体提取(ABEE)模型中,引入了一个结合单任务学习模型的多任务学习模型。我们的模型使用来自《变形金刚》的双向编码器表示来训练单任务学习模型。然后结合模型的输出,从生物医学文本中找到实体的真实性。所提出的ABEE模型针对生物医学文本中的独特基因/蛋白质、化学物质和疾病实体。这一发现在药物研发和临床试验等生物医学研究方面更为重要。这项研究不仅有助于减少研究人员的工作量,而且还降低了新药发现和新疗法的成本。因此,该模型没有任何限制,但研究小组计划用千兆字节的数据测试该模型,并建立一个知识图谱,以便研究人员可以轻松地估计相似群体的实体。就实际意义而言,ABEE模型将有助于各种自然语言处理任务,如信息提取(IE),它在生物医学命名实体识别和生物医学关系提取以及基于文献的知识发现等信息检索任务中发挥重要作用。在2019冠状病毒病大流行期间,由于临床试验的增加,对我们这类工作的需求增加了。如果这种类型的研究在之前就被引入,那么它就会减少在这个领域发现新药的时间和精力。在这项工作中,我们提出了一种新的多任务学习模型,能够从生物医学文本中提取生物医学实体而没有任何歧义。所提出的模型在准确率、召回率和F1分数方面达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ABEE: automated bio entity extraction from biomedical text documents
PurposeThe purpose of this study was to design a multitask learning model so that biomedical entities can be extracted without having any ambiguity from biomedical texts.Design/methodology/approachIn the proposed automated bio entity extraction (ABEE) model, a multitask learning model has been introduced with the combination of single-task learning models. Our model used Bidirectional Encoder Representations from Transformers to train the single-task learning model. Then combined model's outputs so that we can find the verity of entities from biomedical text.FindingsThe proposed ABEE model targeted unique gene/protein, chemical and disease entities from the biomedical text. The finding is more important in terms of biomedical research like drug finding and clinical trials. This research aids not only to reduce the effort of the researcher but also to reduce the cost of new drug discoveries and new treatments.Research limitations/implicationsAs such, there are no limitations with the model, but the research team plans to test the model with gigabyte of data and establish a knowledge graph so that researchers can easily estimate the entities of similar groups.Practical implicationsAs far as the practical implication concerned, the ABEE model will be helpful in various natural language processing task as in information extraction (IE), it plays an important role in the biomedical named entity recognition and biomedical relation extraction and also in the information retrieval task like literature-based knowledge discovery.Social implicationsDuring the COVID-19 pandemic, the demands for this type of our work increased because of the increase in the clinical trials at that time. If this type of research has been introduced previously, then it would have reduced the time and effort for new drug discoveries in this area.Originality/valueIn this work we proposed a novel multitask learning model that is capable to extract biomedical entities from the biomedical text without any ambiguity. The proposed model achieved state-of-the-art performance in terms of precision, recall and F1 score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data Technologies and Applications
Data Technologies and Applications Social Sciences-Library and Information Sciences
CiteScore
3.80
自引率
6.20%
发文量
29
期刊介绍: Previously published as: Program Online from: 2018 Subject Area: Information & Knowledge Management, Library Studies
期刊最新文献
Understanding customer behavior by mapping complaints to personality based on social media textual data A systematic review of the use of FHIR to support clinical research, public health and medical education Novel framework for learning performance prediction using pattern identification and deep learning A comparative analysis of job satisfaction prediction models using machine learning: a mixed-method approach Assessing the alignment of corporate ESG disclosures with the UN sustainable development goals: a BERT-based text analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1