基于支持向量机的煤矿瓦斯浓度分析

L. Kun, Ling-Kai Yang, Mei-Ling Zhang, Cheng Jian
{"title":"基于支持向量机的煤矿瓦斯浓度分析","authors":"L. Kun, Ling-Kai Yang, Mei-Ling Zhang, Cheng Jian","doi":"10.1109/ICISCE.2016.64","DOIUrl":null,"url":null,"abstract":"Production safety is concerned continuously in coalmine, especially the gas safety is a key issue in the working management of coal production. With the development of information technology, a large volume of data should collected from sensors deployed in coalmine. Therefore, it is necessary to forecast gas concentration or evaluate the gas safety in the key point, for example, the underground working face, when there are some faults in the sensing system or the data communication system. In this paper, on the one hand, we adopt Support Vector Regression (SVR) to predict gas concentration with the data from other sensors which are running well, on the other hand, we classify the gas concentration data into two class signed to totally safe or a bit high by applying the model constructed by C-Support Vector Classification (SVC) or one-class Support Vector Machine (SVM). Furthermore, Particle Swarm Optimization (PSO) algorithm and Genetic Algorithm (GA) are employed to optimize the parameters of the model. The performances of the models are compared and analyzed in the paper, and the experimental results show that the proposed methods are effective and feasible for processing the gas concentration.","PeriodicalId":6882,"journal":{"name":"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Coalmine Gas Concentration Analysis Based on Support Vector Machine\",\"authors\":\"L. Kun, Ling-Kai Yang, Mei-Ling Zhang, Cheng Jian\",\"doi\":\"10.1109/ICISCE.2016.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Production safety is concerned continuously in coalmine, especially the gas safety is a key issue in the working management of coal production. With the development of information technology, a large volume of data should collected from sensors deployed in coalmine. Therefore, it is necessary to forecast gas concentration or evaluate the gas safety in the key point, for example, the underground working face, when there are some faults in the sensing system or the data communication system. In this paper, on the one hand, we adopt Support Vector Regression (SVR) to predict gas concentration with the data from other sensors which are running well, on the other hand, we classify the gas concentration data into two class signed to totally safe or a bit high by applying the model constructed by C-Support Vector Classification (SVC) or one-class Support Vector Machine (SVM). Furthermore, Particle Swarm Optimization (PSO) algorithm and Genetic Algorithm (GA) are employed to optimize the parameters of the model. The performances of the models are compared and analyzed in the paper, and the experimental results show that the proposed methods are effective and feasible for processing the gas concentration.\",\"PeriodicalId\":6882,\"journal\":{\"name\":\"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISCE.2016.64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCE.2016.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

煤矿安全生产一直是人们关注的问题,特别是瓦斯安全是煤矿生产工作管理中的一个关键问题。随着信息技术的发展,部署在煤矿中的传感器需要采集大量的数据。因此,当传感系统或数据通信系统出现故障时,有必要对关键部位(如井下工作面)进行瓦斯浓度预测或瓦斯安全性评价。在本文中,我们一方面采用支持向量回归(SVR)对其他运行良好的传感器数据进行气体浓度预测,另一方面,我们利用c -支持向量分类(SVC)或一类支持向量机(SVM)构建的模型,将气体浓度数据分为两类,一类为完全安全,一类为稍高。采用粒子群算法(PSO)和遗传算法(GA)对模型参数进行优化。对模型的性能进行了比较和分析,实验结果表明,所提出的方法对气体浓度的处理是有效和可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coalmine Gas Concentration Analysis Based on Support Vector Machine
Production safety is concerned continuously in coalmine, especially the gas safety is a key issue in the working management of coal production. With the development of information technology, a large volume of data should collected from sensors deployed in coalmine. Therefore, it is necessary to forecast gas concentration or evaluate the gas safety in the key point, for example, the underground working face, when there are some faults in the sensing system or the data communication system. In this paper, on the one hand, we adopt Support Vector Regression (SVR) to predict gas concentration with the data from other sensors which are running well, on the other hand, we classify the gas concentration data into two class signed to totally safe or a bit high by applying the model constructed by C-Support Vector Classification (SVC) or one-class Support Vector Machine (SVM). Furthermore, Particle Swarm Optimization (PSO) algorithm and Genetic Algorithm (GA) are employed to optimize the parameters of the model. The performances of the models are compared and analyzed in the paper, and the experimental results show that the proposed methods are effective and feasible for processing the gas concentration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Method for Color Calibration Based on Simulated Annealing Optimization Temperature Analysis in the Fused Deposition Modeling Process Classification of Hyperspectral Image Based on K-Means and Structured Sparse Coding Analysis and Prediction of Epilepsy Based on Visibility Graph Design of Control System for a Rehabilitation Device for Joints of Lower Limbs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1