PurTreeClust:用于大规模客户交易数据的购买树聚类算法

Xiaojun Chen, J. Huang, Jun Luo
{"title":"PurTreeClust:用于大规模客户交易数据的购买树聚类算法","authors":"Xiaojun Chen, J. Huang, Jun Luo","doi":"10.1109/ICDE.2016.7498279","DOIUrl":null,"url":null,"abstract":"Clustering of customer transaction data is usually an important procedure to analyze customer behaviors in retail and e-commerce companies. Note that products from companies are often organized as a product tree, in which the leaf nodes are goods to sell, and the internal nodes (except root node) could be multiple product categories. Based on this tree, we present to use a “personalized product tree”, called purchase tree, to represent a customer's transaction data. The customer transaction data set can be represented as a set of purchase trees. We propose a PurTreeClust algorithm for clustering of large-scale customers from purchase trees. We define a new distance metric to effectively compute the distance between two purchase trees from the entire levels in the tree. A cover tree is then built for indexing the purchase tree data and we propose a leveled density estimation method for selecting initial cluster centers from a cover tree. PurTreeClust, a fast clustering method for clustering of large-scale purchase trees, is then presented. Last, we propose a gap statistic based method for estimating the number of clusters from the purchase tree clustering results. A series of experiments were conducted on ten large-scale transaction data sets which contain up to four million transaction records, and experimental results have verified the effectiveness and efficiency of the proposed method. We also compared our method with three clustering algorithms, e.g., spectral clustering, hierarchical agglomerative clustering and DBSCAN. The experimental results have demonstrated the superior performance of the proposed method.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"59 1","pages":"661-672"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"PurTreeClust: A purchase tree clustering algorithm for large-scale customer transaction data\",\"authors\":\"Xiaojun Chen, J. Huang, Jun Luo\",\"doi\":\"10.1109/ICDE.2016.7498279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering of customer transaction data is usually an important procedure to analyze customer behaviors in retail and e-commerce companies. Note that products from companies are often organized as a product tree, in which the leaf nodes are goods to sell, and the internal nodes (except root node) could be multiple product categories. Based on this tree, we present to use a “personalized product tree”, called purchase tree, to represent a customer's transaction data. The customer transaction data set can be represented as a set of purchase trees. We propose a PurTreeClust algorithm for clustering of large-scale customers from purchase trees. We define a new distance metric to effectively compute the distance between two purchase trees from the entire levels in the tree. A cover tree is then built for indexing the purchase tree data and we propose a leveled density estimation method for selecting initial cluster centers from a cover tree. PurTreeClust, a fast clustering method for clustering of large-scale purchase trees, is then presented. Last, we propose a gap statistic based method for estimating the number of clusters from the purchase tree clustering results. A series of experiments were conducted on ten large-scale transaction data sets which contain up to four million transaction records, and experimental results have verified the effectiveness and efficiency of the proposed method. We also compared our method with three clustering algorithms, e.g., spectral clustering, hierarchical agglomerative clustering and DBSCAN. The experimental results have demonstrated the superior performance of the proposed method.\",\"PeriodicalId\":6883,\"journal\":{\"name\":\"2016 IEEE 32nd International Conference on Data Engineering (ICDE)\",\"volume\":\"59 1\",\"pages\":\"661-672\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 32nd International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2016.7498279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

客户交易数据聚类通常是零售和电子商务公司分析客户行为的重要步骤。请注意,来自公司的产品通常被组织为产品树,其中叶节点是要销售的商品,内部节点(根节点除外)可以是多个产品类别。在此树的基础上,我们提出使用“个性化产品树”,称为购买树,来表示客户的交易数据。客户事务数据集可以表示为一组购买树。我们提出了一种PurTreeClust算法,用于从购买树中聚类大规模客户。我们定义了一个新的距离度量来有效地计算两个购买树之间的距离。然后建立一个覆盖树用于索引购买树数据,我们提出了一种分层密度估计方法,用于从覆盖树中选择初始聚类中心。提出了一种用于大规模采购树聚类的快速聚类方法PurTreeClust。最后,我们提出了一种基于间隙统计的方法,从购买树聚类结果中估计聚类数量。在10个包含400万条交易记录的大规模交易数据集上进行了一系列实验,实验结果验证了该方法的有效性和高效性。并将该方法与光谱聚类、层次聚类和DBSCAN三种聚类算法进行了比较。实验结果证明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PurTreeClust: A purchase tree clustering algorithm for large-scale customer transaction data
Clustering of customer transaction data is usually an important procedure to analyze customer behaviors in retail and e-commerce companies. Note that products from companies are often organized as a product tree, in which the leaf nodes are goods to sell, and the internal nodes (except root node) could be multiple product categories. Based on this tree, we present to use a “personalized product tree”, called purchase tree, to represent a customer's transaction data. The customer transaction data set can be represented as a set of purchase trees. We propose a PurTreeClust algorithm for clustering of large-scale customers from purchase trees. We define a new distance metric to effectively compute the distance between two purchase trees from the entire levels in the tree. A cover tree is then built for indexing the purchase tree data and we propose a leveled density estimation method for selecting initial cluster centers from a cover tree. PurTreeClust, a fast clustering method for clustering of large-scale purchase trees, is then presented. Last, we propose a gap statistic based method for estimating the number of clusters from the purchase tree clustering results. A series of experiments were conducted on ten large-scale transaction data sets which contain up to four million transaction records, and experimental results have verified the effectiveness and efficiency of the proposed method. We also compared our method with three clustering algorithms, e.g., spectral clustering, hierarchical agglomerative clustering and DBSCAN. The experimental results have demonstrated the superior performance of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data profiling SEED: A system for entity exploration and debugging in large-scale knowledge graphs TemProRA: Top-k temporal-probabilistic results analysis Durable graph pattern queries on historical graphs SCouT: Scalable coupled matrix-tensor factorization - algorithm and discoveries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1