{"title":"内参草congoënse抗疟原虫活性化合物的分子对接、药代动力学及分子动力学模拟研究","authors":"S. Ahmed, G. Happi, Désiré Soh, S. Salau","doi":"10.9734/ajocs/2022/v12i119141","DOIUrl":null,"url":null,"abstract":"As a follow-up to earlier reported works on the phytochemical study of some isolated bioactive compounds from the root and bark of Entandrophragma congoënse as potent anti-plasmodium drugs (Happi et. al.2005), some of the isolated compounds were tested in vitro for antiplasmodial and cytotoxicity but no insight was given into the binding affinities of these compounds, the ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity), drug-likeness studies as well as molecular dynamics simulation of some of the isolates. Hence, a total of 21 compounds including 19 isolates and 2 standard drugs were computationally studied for antimalarial activity against the target receptor with Protein Data Bank code (PDB code: 5TBO), but only 4 of the isolated compounds (L1, L2, L4 and L15) showed promise potent hits against Plasmodium. The results of molecular docking, ADMET studies and molecular dynamics simulations reveal that compound L15, when isolated, can alone, or together with other qualified compounds such as L1, L2 and L4 provide a better inhibition rating compared to Chloroquine® (L21) the FDA-approved drug for the treatment of malaria.","PeriodicalId":8505,"journal":{"name":"Asian Journal of Chemical Sciences","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Molecular Docking, Pharmacokinetics and Molecular Dynamics Simulation Studies of Some Bioactive Compounds Isolated from Entandrophragma congoënse for Antiplasmodial Activity\",\"authors\":\"S. Ahmed, G. Happi, Désiré Soh, S. Salau\",\"doi\":\"10.9734/ajocs/2022/v12i119141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a follow-up to earlier reported works on the phytochemical study of some isolated bioactive compounds from the root and bark of Entandrophragma congoënse as potent anti-plasmodium drugs (Happi et. al.2005), some of the isolated compounds were tested in vitro for antiplasmodial and cytotoxicity but no insight was given into the binding affinities of these compounds, the ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity), drug-likeness studies as well as molecular dynamics simulation of some of the isolates. Hence, a total of 21 compounds including 19 isolates and 2 standard drugs were computationally studied for antimalarial activity against the target receptor with Protein Data Bank code (PDB code: 5TBO), but only 4 of the isolated compounds (L1, L2, L4 and L15) showed promise potent hits against Plasmodium. The results of molecular docking, ADMET studies and molecular dynamics simulations reveal that compound L15, when isolated, can alone, or together with other qualified compounds such as L1, L2 and L4 provide a better inhibition rating compared to Chloroquine® (L21) the FDA-approved drug for the treatment of malaria.\",\"PeriodicalId\":8505,\"journal\":{\"name\":\"Asian Journal of Chemical Sciences\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Chemical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/ajocs/2022/v12i119141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Chemical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/ajocs/2022/v12i119141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular Docking, Pharmacokinetics and Molecular Dynamics Simulation Studies of Some Bioactive Compounds Isolated from Entandrophragma congoënse for Antiplasmodial Activity
As a follow-up to earlier reported works on the phytochemical study of some isolated bioactive compounds from the root and bark of Entandrophragma congoënse as potent anti-plasmodium drugs (Happi et. al.2005), some of the isolated compounds were tested in vitro for antiplasmodial and cytotoxicity but no insight was given into the binding affinities of these compounds, the ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity), drug-likeness studies as well as molecular dynamics simulation of some of the isolates. Hence, a total of 21 compounds including 19 isolates and 2 standard drugs were computationally studied for antimalarial activity against the target receptor with Protein Data Bank code (PDB code: 5TBO), but only 4 of the isolated compounds (L1, L2, L4 and L15) showed promise potent hits against Plasmodium. The results of molecular docking, ADMET studies and molecular dynamics simulations reveal that compound L15, when isolated, can alone, or together with other qualified compounds such as L1, L2 and L4 provide a better inhibition rating compared to Chloroquine® (L21) the FDA-approved drug for the treatment of malaria.