机器学习预测注水和注汽共同驱动的成熟陆上油田产油量

L. Kubota, Danilo Reinert
{"title":"机器学习预测注水和注汽共同驱动的成熟陆上油田产油量","authors":"L. Kubota, Danilo Reinert","doi":"10.2118/196152-ms","DOIUrl":null,"url":null,"abstract":"\n In this paper, we tackle an old problem – production forecast - using techniques that are relatively new to the reservoir engineer toolbox. The problem at hand consists of forecasting oil production in a mature onshore field simultaneously driven by water and steam injection. However, instead of turning to traditional methods, we deploy machine-learning algorithms which will feed on a plethora of historical data to extract hidden patterns and underlying relationships with a view to forecasting oil rate. No geological model and/or numerical reservoir simulators will be needed, only 3 sets of time-series: injection history, production history and number of producers. Two Machine-Learning algorithms are used: linear-regression and recurrent neural networks.","PeriodicalId":10909,"journal":{"name":"Day 2 Tue, October 01, 2019","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Machine Learning Forecasts Oil Rate in Mature Onshore Field Jointly Driven by Water and Steam Injection\",\"authors\":\"L. Kubota, Danilo Reinert\",\"doi\":\"10.2118/196152-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we tackle an old problem – production forecast - using techniques that are relatively new to the reservoir engineer toolbox. The problem at hand consists of forecasting oil production in a mature onshore field simultaneously driven by water and steam injection. However, instead of turning to traditional methods, we deploy machine-learning algorithms which will feed on a plethora of historical data to extract hidden patterns and underlying relationships with a view to forecasting oil rate. No geological model and/or numerical reservoir simulators will be needed, only 3 sets of time-series: injection history, production history and number of producers. Two Machine-Learning algorithms are used: linear-regression and recurrent neural networks.\",\"PeriodicalId\":10909,\"journal\":{\"name\":\"Day 2 Tue, October 01, 2019\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, October 01, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/196152-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, October 01, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196152-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们利用油藏工程师工具箱中相对较新的技术来解决一个老问题——产量预测。当前的问题包括预测一个成熟的陆上油田同时注水和注汽的产油量。然而,我们没有采用传统的方法,而是采用了机器学习算法,该算法将以大量的历史数据为基础,提取隐藏的模式和潜在的关系,以预测石油产量。不需要地质模型和/或数值油藏模拟器,只需要3组时间序列:注入历史、生产历史和生产商数量。使用了两种机器学习算法:线性回归和循环神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Forecasts Oil Rate in Mature Onshore Field Jointly Driven by Water and Steam Injection
In this paper, we tackle an old problem – production forecast - using techniques that are relatively new to the reservoir engineer toolbox. The problem at hand consists of forecasting oil production in a mature onshore field simultaneously driven by water and steam injection. However, instead of turning to traditional methods, we deploy machine-learning algorithms which will feed on a plethora of historical data to extract hidden patterns and underlying relationships with a view to forecasting oil rate. No geological model and/or numerical reservoir simulators will be needed, only 3 sets of time-series: injection history, production history and number of producers. Two Machine-Learning algorithms are used: linear-regression and recurrent neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Verification of Autonomous Inflow Control Valve Flow Performance Within Heavy Oil-SAGD Thermal Flow Loop Reactive vs Proactive Intelligent Well Injection Evaluation for EOR in a Stratified GOM Deepwater Wilcox Reservoir using Integrated Simulation-Surface Network Modeling A Novel Workflow for Oil Production Forecasting using Ensemble-Based Decline Curve Analysis An Artificial Intelligence Approach to Predict the Water Saturation in Carbonate Reservoir Rocks Characterization of Organic Pores within High-Maturation Shale Gas Reservoirs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1