E. S. Bayrak, B. Akar, S. Somo, Chenlin Lu, Nan Xiao, E. Brey, A. Çinar
{"title":"基于计算模型的支架血管化增强策略分析","authors":"E. S. Bayrak, B. Akar, S. Somo, Chenlin Lu, Nan Xiao, E. Brey, A. Çinar","doi":"10.1089/biores.2016.0039","DOIUrl":null,"url":null,"abstract":"Abstract Stable and extensive blood vessel networks are required for cell function and survival in engineered tissues. A number of different strategies are currently being investigated to enhance biomaterial vascularization with screening primarily through extensive in vitro and in vivo experiments. In this article, we describe an agent-based model (ABM) developed to evaluate various strategies in silico, including design of optimal biomaterial structure, delivery of angiogenic factors, and application of prevascularized biomaterials. The model predictions are evaluated using experimental data. The ABM developed provides insight into different strategies currently applied for scaffold vascularization and will enable researchers to rapidly screen new hypotheses and explore alternative strategies for enhancing vascularization.","PeriodicalId":9100,"journal":{"name":"BioResearch Open Access","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computational Model-Based Analysis of Strategies to Enhance Scaffold Vascularization\",\"authors\":\"E. S. Bayrak, B. Akar, S. Somo, Chenlin Lu, Nan Xiao, E. Brey, A. Çinar\",\"doi\":\"10.1089/biores.2016.0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Stable and extensive blood vessel networks are required for cell function and survival in engineered tissues. A number of different strategies are currently being investigated to enhance biomaterial vascularization with screening primarily through extensive in vitro and in vivo experiments. In this article, we describe an agent-based model (ABM) developed to evaluate various strategies in silico, including design of optimal biomaterial structure, delivery of angiogenic factors, and application of prevascularized biomaterials. The model predictions are evaluated using experimental data. The ABM developed provides insight into different strategies currently applied for scaffold vascularization and will enable researchers to rapidly screen new hypotheses and explore alternative strategies for enhancing vascularization.\",\"PeriodicalId\":9100,\"journal\":{\"name\":\"BioResearch Open Access\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioResearch Open Access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/biores.2016.0039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioResearch Open Access","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/biores.2016.0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Computational Model-Based Analysis of Strategies to Enhance Scaffold Vascularization
Abstract Stable and extensive blood vessel networks are required for cell function and survival in engineered tissues. A number of different strategies are currently being investigated to enhance biomaterial vascularization with screening primarily through extensive in vitro and in vivo experiments. In this article, we describe an agent-based model (ABM) developed to evaluate various strategies in silico, including design of optimal biomaterial structure, delivery of angiogenic factors, and application of prevascularized biomaterials. The model predictions are evaluated using experimental data. The ABM developed provides insight into different strategies currently applied for scaffold vascularization and will enable researchers to rapidly screen new hypotheses and explore alternative strategies for enhancing vascularization.
BioResearch Open AccessBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
自引率
0.00%
发文量
1
期刊介绍:
BioResearch Open Access is a high-quality open access journal providing peer-reviewed research on a broad range of scientific topics, including molecular and cellular biology, tissue engineering, regenerative medicine, stem cells, gene therapy, systems biology, genetics, virology, and neuroscience. The Journal publishes basic science and translational research in the form of original research articles, comprehensive review articles, mini-reviews, rapid communications, brief reports, technology reports, hypothesis articles, perspectives, and letters to the editor.