M. Gholami, A. Mahvi, Fahimeh Teimouri, M. Ehrampoush, Abbasali Jafari Nodoushan, S. Jambarsang, M. Ghaneian
{"title":"降解细菌和真菌修复技术是处理再生纸和纸板厂废水的一种很有前途的方法","authors":"M. Gholami, A. Mahvi, Fahimeh Teimouri, M. Ehrampoush, Abbasali Jafari Nodoushan, S. Jambarsang, M. Ghaneian","doi":"10.1108/prt-07-2022-0089","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to study the application of high-tolerance and flexible indigenous bacteria and fungi, along with the co-metabolism in recycled paper and cardboard mill (RPCM) wastewater treatment (WWT).\n\n\nDesign/methodology/approach\nThe molecular characterization of isolated indigenous bacteria and fungi was performed by 16S rRNA and 18S rRNA gene sequencing, respectively. Glucose was used as a cometabolic substrate to enhance the bioremediation process.\n\n\nFindings\nThe highest removal efficiency was achieved for both chemical oxygen demand (COD) and color [78% COD and 45% color removal by Pseudomonas aeruginosa RW-2 (MZ603673), as well as approximately 70% COD and 48% color removal by Geotrichum candidum RW-4 (ON024394)]. The corresponding percentages were higher in comparison with the efficiency obtained from the oxidation ditch unit in the full-scale RPCM WWT plant.\n\n\nOriginality/value\nIndigenous P. aeruginosa RW-2 and G. candidum RW-4 demonstrated effective capability in RPCM WWT despite the highly toxic and low biodegradable nature, especially with the assistance of glucose.\n","PeriodicalId":20147,"journal":{"name":"Pigment & Resin Technology","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cometabolic bacterial and fungal remediation as a promising strategy for recycled paper and cardboard mill wastewater treatment\",\"authors\":\"M. Gholami, A. Mahvi, Fahimeh Teimouri, M. Ehrampoush, Abbasali Jafari Nodoushan, S. Jambarsang, M. Ghaneian\",\"doi\":\"10.1108/prt-07-2022-0089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis paper aims to study the application of high-tolerance and flexible indigenous bacteria and fungi, along with the co-metabolism in recycled paper and cardboard mill (RPCM) wastewater treatment (WWT).\\n\\n\\nDesign/methodology/approach\\nThe molecular characterization of isolated indigenous bacteria and fungi was performed by 16S rRNA and 18S rRNA gene sequencing, respectively. Glucose was used as a cometabolic substrate to enhance the bioremediation process.\\n\\n\\nFindings\\nThe highest removal efficiency was achieved for both chemical oxygen demand (COD) and color [78% COD and 45% color removal by Pseudomonas aeruginosa RW-2 (MZ603673), as well as approximately 70% COD and 48% color removal by Geotrichum candidum RW-4 (ON024394)]. The corresponding percentages were higher in comparison with the efficiency obtained from the oxidation ditch unit in the full-scale RPCM WWT plant.\\n\\n\\nOriginality/value\\nIndigenous P. aeruginosa RW-2 and G. candidum RW-4 demonstrated effective capability in RPCM WWT despite the highly toxic and low biodegradable nature, especially with the assistance of glucose.\\n\",\"PeriodicalId\":20147,\"journal\":{\"name\":\"Pigment & Resin Technology\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pigment & Resin Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/prt-07-2022-0089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pigment & Resin Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/prt-07-2022-0089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cometabolic bacterial and fungal remediation as a promising strategy for recycled paper and cardboard mill wastewater treatment
Purpose
This paper aims to study the application of high-tolerance and flexible indigenous bacteria and fungi, along with the co-metabolism in recycled paper and cardboard mill (RPCM) wastewater treatment (WWT).
Design/methodology/approach
The molecular characterization of isolated indigenous bacteria and fungi was performed by 16S rRNA and 18S rRNA gene sequencing, respectively. Glucose was used as a cometabolic substrate to enhance the bioremediation process.
Findings
The highest removal efficiency was achieved for both chemical oxygen demand (COD) and color [78% COD and 45% color removal by Pseudomonas aeruginosa RW-2 (MZ603673), as well as approximately 70% COD and 48% color removal by Geotrichum candidum RW-4 (ON024394)]. The corresponding percentages were higher in comparison with the efficiency obtained from the oxidation ditch unit in the full-scale RPCM WWT plant.
Originality/value
Indigenous P. aeruginosa RW-2 and G. candidum RW-4 demonstrated effective capability in RPCM WWT despite the highly toxic and low biodegradable nature, especially with the assistance of glucose.