通过工程设计核心元件间隔区和5 '非翻译区构建超强PtacM启动子,用于谷氨酸棒状杆菌的多功能应用

Yan Du , Miaomiao Wang , Claudia Chen Sun , Huimin Yu
{"title":"通过工程设计核心元件间隔区和5 '非翻译区构建超强PtacM启动子,用于谷氨酸棒状杆菌的多功能应用","authors":"Yan Du ,&nbsp;Miaomiao Wang ,&nbsp;Claudia Chen Sun ,&nbsp;Huimin Yu","doi":"10.1016/j.biotno.2022.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>As one of the most important synthetic biology elements in transcriptional regulation, promoters play irreplaceable roles in metabolic engineering. For the industrial microorganism <em>Corynebacterium glutamicum</em>, both the construction of a promoter library with gradient strength and the creation of ultra-strong promoters are essential for the production of target enzymes and compounds. In this work, the spacer sequence (both length and base) between the −35 and −10 regions, and the 5′-terminal untranslated region (5′UTR) were particularly highlighted to investigate their contributions to promoter strength. We constructed a series of artificially induced promoters based on the classical tac promoter using <em>C. glutamicum</em> ATCC13032 as the host. Here, we explored the effect of sequence length between the −35 and −10 regions on the strength of the tac promoter, and found that the mutant with 15 nt spacer length (PtacL15) was transcriptionally stronger than the classic Ptac (16 nt); subsequently, based on PtacL15, we explored the effect of the nucleotide sequence in the spacer region on transcriptional strength, and screened the strongest PtacL15m-110 (GAACAGGCTTTATCT), and PtacL15m-87 (AGTCGCTAAGACTCA); finally, we investigated the effect of the length of the 5′-terminal untranslated region (5′UTR) and screened out the optimal PtacM4 mutant with a 5′UTR length of 32 nt. Based on our new findings on the optimal spacer length (15 nt), nucleotide sequence (AGTCGCTAAGACTCA), and 5′UTR (truncated 32 nt), an ultra-strong PtacM, whose transcriptional strength was about 3.25 times that of the original Ptac, was obtained. We anticipate that these promoters with gradient transcriptional strength and the ultra-strong PtacM will play an important role in the construction of recombinant strains and industrial production.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"3 ","pages":"Pages 88-96"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906922000125/pdfft?md5=7e38e4ed58f11fe6f762eb6c4d393b76&pid=1-s2.0-S2665906922000125-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Construction of an ultra-strong PtacM promoter via engineering the core-element spacer and 5′ untranslated region for versatile applications in Corynebacterium glutamicum\",\"authors\":\"Yan Du ,&nbsp;Miaomiao Wang ,&nbsp;Claudia Chen Sun ,&nbsp;Huimin Yu\",\"doi\":\"10.1016/j.biotno.2022.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As one of the most important synthetic biology elements in transcriptional regulation, promoters play irreplaceable roles in metabolic engineering. For the industrial microorganism <em>Corynebacterium glutamicum</em>, both the construction of a promoter library with gradient strength and the creation of ultra-strong promoters are essential for the production of target enzymes and compounds. In this work, the spacer sequence (both length and base) between the −35 and −10 regions, and the 5′-terminal untranslated region (5′UTR) were particularly highlighted to investigate their contributions to promoter strength. We constructed a series of artificially induced promoters based on the classical tac promoter using <em>C. glutamicum</em> ATCC13032 as the host. Here, we explored the effect of sequence length between the −35 and −10 regions on the strength of the tac promoter, and found that the mutant with 15 nt spacer length (PtacL15) was transcriptionally stronger than the classic Ptac (16 nt); subsequently, based on PtacL15, we explored the effect of the nucleotide sequence in the spacer region on transcriptional strength, and screened the strongest PtacL15m-110 (GAACAGGCTTTATCT), and PtacL15m-87 (AGTCGCTAAGACTCA); finally, we investigated the effect of the length of the 5′-terminal untranslated region (5′UTR) and screened out the optimal PtacM4 mutant with a 5′UTR length of 32 nt. Based on our new findings on the optimal spacer length (15 nt), nucleotide sequence (AGTCGCTAAGACTCA), and 5′UTR (truncated 32 nt), an ultra-strong PtacM, whose transcriptional strength was about 3.25 times that of the original Ptac, was obtained. We anticipate that these promoters with gradient transcriptional strength and the ultra-strong PtacM will play an important role in the construction of recombinant strains and industrial production.</p></div>\",\"PeriodicalId\":100186,\"journal\":{\"name\":\"Biotechnology Notes\",\"volume\":\"3 \",\"pages\":\"Pages 88-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665906922000125/pdfft?md5=7e38e4ed58f11fe6f762eb6c4d393b76&pid=1-s2.0-S2665906922000125-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665906922000125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Notes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665906922000125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

启动子作为转录调控中最重要的合成生物学元件之一,在代谢工程中具有不可替代的作用。对于工业微生物谷氨棒状杆菌来说,构建具有梯度强度的启动子文库和创建超强启动子是产生目标酶和化合物的必要条件。在这项工作中,特别强调了- 35和- 10区域之间的间隔序列(长度和碱基),以及5 '端未翻译区(5 ' utr),以研究它们对启动子强度的贡献。以谷氨酰胺ATCC13032为宿主,在经典tac启动子的基础上,构建了一系列人工诱导启动子。在这里,我们探索了−35和−10区域之间的序列长度对tac启动子强度的影响,发现间隔长度为15 nt的突变体(PtacL15)比经典的Ptac (16 nt)在转录上更强;随后,我们以PtacL15为基础,探索间隔区核苷酸序列对转录强度的影响,筛选出最强的PtacL15m-110 (GAACAGGCTTTATCT)和PtacL15m-87 (AGTCGCTAAGACTCA);最后,我们考察了5′端非翻译区(5′utr)长度的影响,筛选出了5′utr长度为32 nt的最佳PtacM4突变体。基于我们对最佳间隔长度(15 nt)、核苷酸序列(AGTCGCTAAGACTCA)和5′utr(截断32 nt)的新发现,获得了一个转录强度约为原Ptac的3.25倍的超强PtacM。我们预计这些具有梯度转录强度和超强PtacM的启动子将在重组菌株的构建和工业生产中发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction of an ultra-strong PtacM promoter via engineering the core-element spacer and 5′ untranslated region for versatile applications in Corynebacterium glutamicum

As one of the most important synthetic biology elements in transcriptional regulation, promoters play irreplaceable roles in metabolic engineering. For the industrial microorganism Corynebacterium glutamicum, both the construction of a promoter library with gradient strength and the creation of ultra-strong promoters are essential for the production of target enzymes and compounds. In this work, the spacer sequence (both length and base) between the −35 and −10 regions, and the 5′-terminal untranslated region (5′UTR) were particularly highlighted to investigate their contributions to promoter strength. We constructed a series of artificially induced promoters based on the classical tac promoter using C. glutamicum ATCC13032 as the host. Here, we explored the effect of sequence length between the −35 and −10 regions on the strength of the tac promoter, and found that the mutant with 15 nt spacer length (PtacL15) was transcriptionally stronger than the classic Ptac (16 nt); subsequently, based on PtacL15, we explored the effect of the nucleotide sequence in the spacer region on transcriptional strength, and screened the strongest PtacL15m-110 (GAACAGGCTTTATCT), and PtacL15m-87 (AGTCGCTAAGACTCA); finally, we investigated the effect of the length of the 5′-terminal untranslated region (5′UTR) and screened out the optimal PtacM4 mutant with a 5′UTR length of 32 nt. Based on our new findings on the optimal spacer length (15 nt), nucleotide sequence (AGTCGCTAAGACTCA), and 5′UTR (truncated 32 nt), an ultra-strong PtacM, whose transcriptional strength was about 3.25 times that of the original Ptac, was obtained. We anticipate that these promoters with gradient transcriptional strength and the ultra-strong PtacM will play an important role in the construction of recombinant strains and industrial production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
Incorporating omics-based tools into endophytic fungal research Organ-on-chip technology: Opportunities and challenges Identifying Chlorella vulgaris and Chlorella sorokiniana as sustainable organisms to bioconvert glucosamine into valuable biomass Engineered microbial consortia for next-generation feedstocks Antibiotic susceptibility and virulence factors of bacterial species among cancer patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1