一种低噪声HTS SQUID磁强计,其片上拾取环路通过中间磁通变压器耦合

Nicholas J. Exon, Mark N. Keene, Julian S. Satchell, Nigel G. Chew, Matthew J. Wooliscroft, Karan Lander, Richard G. Humphreys
{"title":"一种低噪声HTS SQUID磁强计,其片上拾取环路通过中间磁通变压器耦合","authors":"Nicholas J. Exon,&nbsp;Mark N. Keene,&nbsp;Julian S. Satchell,&nbsp;Nigel G. Chew,&nbsp;Matthew J. Wooliscroft,&nbsp;Karan Lander,&nbsp;Richard G. Humphreys","doi":"10.1016/S0964-1807(99)00026-5","DOIUrl":null,"url":null,"abstract":"<div><p>For many SQUID applications robust, compact magnetometers are required with low flux noise and high effective area at 77<!--> <!-->K. Low flux noise is achieved by using a low inductance SQUID. A low inductance SQUID will also have a high transfer function, allowing simplified direct readout schemes to be used. For maximum field sensitivity the SQUID needs to be coupled to a pickup loop of large area and therefore large inductance. We have modelled, designed and fabricated a novel HTS magnetometer consisting of a low inductance (&lt;16<!--> <!-->pH) dc SQUID coupled to a 28<!--> <!-->nH pickup loop flux transformer fabricated on the same 1<!--> <!-->cm<sup>2</sup> substrate. Efficient coupling was achieved by using a flip-chipped intermediate flux transformer. This configuration produces a magnetometer with a high sensitivity per unit area. The magnetometers incorporate PrBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> isolation layers and two 2<!--> <em>μ</em>m diameter CAM variant junctions. Thick YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub><span> layers were used to improve coupling and decrease the demagnetisation factor wherever possible. Our device had a transfer function of 913</span> <em>μ</em>V/<em>Φ</em><sub>0</sub> which allows direct readout without any matching or additional positive feedback arrangements. The measured effective area at 77<!--> <!-->K was 0.58<!--> <!-->mm<sup>2</sup> (3.6<!--> <!-->nT/<em>Φ</em><sub>0</sub>). The magnetometer white noise was 18<!--> <!-->fT/<span><math><mtext>Hz</mtext></math></span> and at 1<!--> <!-->Hz was 380<!--> <!-->fT/<span><math><mtext>Hz</mtext></math></span>. This was reduced at 1<!--> <!-->Hz to 120<!--> <!-->fT/<span><math><mtext>Hz</mtext></math></span> using bias reversal. The measured white noise was higher than the design value and is largely due to Johnson noise from the PrBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> isolation layer used in our devices.</p></div>","PeriodicalId":100110,"journal":{"name":"Applied Superconductivity","volume":"6 10","pages":"Pages 663-667"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0964-1807(99)00026-5","citationCount":"3","resultStr":"{\"title\":\"A low noise HTS SQUID magnetometer with an on-chip pickup loop coupled via an intermediate flux transformer\",\"authors\":\"Nicholas J. Exon,&nbsp;Mark N. Keene,&nbsp;Julian S. Satchell,&nbsp;Nigel G. Chew,&nbsp;Matthew J. Wooliscroft,&nbsp;Karan Lander,&nbsp;Richard G. Humphreys\",\"doi\":\"10.1016/S0964-1807(99)00026-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For many SQUID applications robust, compact magnetometers are required with low flux noise and high effective area at 77<!--> <!-->K. Low flux noise is achieved by using a low inductance SQUID. A low inductance SQUID will also have a high transfer function, allowing simplified direct readout schemes to be used. For maximum field sensitivity the SQUID needs to be coupled to a pickup loop of large area and therefore large inductance. We have modelled, designed and fabricated a novel HTS magnetometer consisting of a low inductance (&lt;16<!--> <!-->pH) dc SQUID coupled to a 28<!--> <!-->nH pickup loop flux transformer fabricated on the same 1<!--> <!-->cm<sup>2</sup> substrate. Efficient coupling was achieved by using a flip-chipped intermediate flux transformer. This configuration produces a magnetometer with a high sensitivity per unit area. The magnetometers incorporate PrBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> isolation layers and two 2<!--> <em>μ</em>m diameter CAM variant junctions. Thick YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub><span> layers were used to improve coupling and decrease the demagnetisation factor wherever possible. Our device had a transfer function of 913</span> <em>μ</em>V/<em>Φ</em><sub>0</sub> which allows direct readout without any matching or additional positive feedback arrangements. The measured effective area at 77<!--> <!-->K was 0.58<!--> <!-->mm<sup>2</sup> (3.6<!--> <!-->nT/<em>Φ</em><sub>0</sub>). The magnetometer white noise was 18<!--> <!-->fT/<span><math><mtext>Hz</mtext></math></span> and at 1<!--> <!-->Hz was 380<!--> <!-->fT/<span><math><mtext>Hz</mtext></math></span>. This was reduced at 1<!--> <!-->Hz to 120<!--> <!-->fT/<span><math><mtext>Hz</mtext></math></span> using bias reversal. The measured white noise was higher than the design value and is largely due to Johnson noise from the PrBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> isolation layer used in our devices.</p></div>\",\"PeriodicalId\":100110,\"journal\":{\"name\":\"Applied Superconductivity\",\"volume\":\"6 10\",\"pages\":\"Pages 663-667\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0964-1807(99)00026-5\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Superconductivity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0964180799000265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964180799000265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对于许多SQUID应用,需要坚固,紧凑的磁强计,具有低磁通噪声和77k时的高有效面积。低磁通噪声是通过使用低电感的SQUID来实现的。低电感SQUID还具有高传递函数,允许使用简化的直接读出方案。为了获得最大的场灵敏度,SQUID需要与大面积的拾取回路耦合,因此电感也很大。我们模拟,设计和制造了一种新型的高温超导磁强计,该磁强计由低电感(<16 pH)直流SQUID与在相同1 cm2基板上制造的28 nH拾取环路磁通变压器组成。采用倒装式中间磁通变压器实现了高效耦合。这种配置产生的磁力计具有高灵敏度每单位面积。磁强计采用PrBa2Cu3O7隔离层和两个2 μm直径的CAM变结。采用厚的YBa2Cu3O7层来改善耦合并尽可能降低退磁系数。该器件的传递函数为913 μV/Φ0,无需任何匹配或额外的正反馈安排即可直接读出。在77 K时测量的有效面积为0.58 mm2 (3.6 nT/Φ0)。磁力计白噪声为18 fT/Hz, 1 Hz时为380 fT/Hz。使用偏置反转将其降低到1hz至120ft /Hz。测量到的白噪声高于设计值,主要是由于我们器件中使用的PrBa2Cu3O7隔离层产生的约翰逊噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A low noise HTS SQUID magnetometer with an on-chip pickup loop coupled via an intermediate flux transformer

For many SQUID applications robust, compact magnetometers are required with low flux noise and high effective area at 77 K. Low flux noise is achieved by using a low inductance SQUID. A low inductance SQUID will also have a high transfer function, allowing simplified direct readout schemes to be used. For maximum field sensitivity the SQUID needs to be coupled to a pickup loop of large area and therefore large inductance. We have modelled, designed and fabricated a novel HTS magnetometer consisting of a low inductance (<16 pH) dc SQUID coupled to a 28 nH pickup loop flux transformer fabricated on the same 1 cm2 substrate. Efficient coupling was achieved by using a flip-chipped intermediate flux transformer. This configuration produces a magnetometer with a high sensitivity per unit area. The magnetometers incorporate PrBa2Cu3O7 isolation layers and two 2 μm diameter CAM variant junctions. Thick YBa2Cu3O7 layers were used to improve coupling and decrease the demagnetisation factor wherever possible. Our device had a transfer function of 913 μV/Φ0 which allows direct readout without any matching or additional positive feedback arrangements. The measured effective area at 77 K was 0.58 mm2 (3.6 nT/Φ0). The magnetometer white noise was 18 fT/Hz and at 1 Hz was 380 fT/Hz. This was reduced at 1 Hz to 120 fT/Hz using bias reversal. The measured white noise was higher than the design value and is largely due to Johnson noise from the PrBa2Cu3O7 isolation layer used in our devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Raw data and analysis pipeline for producing figures in F.W. Carter, et. al., 2016 Review and evaluation of methods for application of epitaxial buffer and superconductor layers1 10 K NbN ADC for IR sensor applications Optically-induced effects in Y–ba–cu–O Josephson junctions Cell-library design methodology for integrated RSFQ-logic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1