家具极客:从自由关联的文本和标签中理解细粒度家具属性

Vicente Ordonez, V. Jagadeesh, Wei Di, Anurag Bhardwaj, Robinson Piramuthu
{"title":"家具极客:从自由关联的文本和标签中理解细粒度家具属性","authors":"Vicente Ordonez, V. Jagadeesh, Wei Di, Anurag Bhardwaj, Robinson Piramuthu","doi":"10.1109/WACV.2014.6836083","DOIUrl":null,"url":null,"abstract":"As the amount of user generated content on the internet grows, it becomes ever more important to come up with vision systems that learn directly from weakly annotated and noisy data. We leverage a large scale collection of user generated content comprising of images, tags and title/captions of furniture inventory from an e-commerce website to discover and categorize learnable visual attributes. Furniture categories have long been the quintessential example of why computer vision is hard, and we make one of the first attempts to understand them through a large scale weakly annotated dataset. We focus on a handful of furniture categories that are associated with a large number of fine-grained attributes. We propose a set of localized feature representations built on top of state-of-the-art computer vision representations originally designed for fine-grained object categorization. We report a thorough empirical characterization on the visual identifiability of various fine-grained attributes using these representations and show encouraging results on finding iconic images and on multi-attribute prediction.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"11 1","pages":"317-324"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Furniture-geek: Understanding fine-grained furniture attributes from freely associated text and tags\",\"authors\":\"Vicente Ordonez, V. Jagadeesh, Wei Di, Anurag Bhardwaj, Robinson Piramuthu\",\"doi\":\"10.1109/WACV.2014.6836083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the amount of user generated content on the internet grows, it becomes ever more important to come up with vision systems that learn directly from weakly annotated and noisy data. We leverage a large scale collection of user generated content comprising of images, tags and title/captions of furniture inventory from an e-commerce website to discover and categorize learnable visual attributes. Furniture categories have long been the quintessential example of why computer vision is hard, and we make one of the first attempts to understand them through a large scale weakly annotated dataset. We focus on a handful of furniture categories that are associated with a large number of fine-grained attributes. We propose a set of localized feature representations built on top of state-of-the-art computer vision representations originally designed for fine-grained object categorization. We report a thorough empirical characterization on the visual identifiability of various fine-grained attributes using these representations and show encouraging results on finding iconic images and on multi-attribute prediction.\",\"PeriodicalId\":73325,\"journal\":{\"name\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"volume\":\"11 1\",\"pages\":\"317-324\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2014.6836083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6836083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

随着互联网上用户生成内容的数量不断增长,直接从弱注释和噪声数据中学习的视觉系统变得越来越重要。我们利用大量用户生成的内容,包括来自电子商务网站的家具库存的图像、标签和标题/说明,来发现和分类可学习的视觉属性。长期以来,家具类别一直是计算机视觉困难的典型例子,我们通过大规模弱注释数据集首次尝试理解它们。我们专注于与大量细粒度属性相关联的少数家具类别。我们提出了一组局部特征表示,建立在最初为细粒度对象分类设计的最先进的计算机视觉表示之上。我们报告了使用这些表示对各种细粒度属性的视觉可识别性进行了彻底的经验表征,并在寻找标志性图像和多属性预测方面显示了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Furniture-geek: Understanding fine-grained furniture attributes from freely associated text and tags
As the amount of user generated content on the internet grows, it becomes ever more important to come up with vision systems that learn directly from weakly annotated and noisy data. We leverage a large scale collection of user generated content comprising of images, tags and title/captions of furniture inventory from an e-commerce website to discover and categorize learnable visual attributes. Furniture categories have long been the quintessential example of why computer vision is hard, and we make one of the first attempts to understand them through a large scale weakly annotated dataset. We focus on a handful of furniture categories that are associated with a large number of fine-grained attributes. We propose a set of localized feature representations built on top of state-of-the-art computer vision representations originally designed for fine-grained object categorization. We report a thorough empirical characterization on the visual identifiability of various fine-grained attributes using these representations and show encouraging results on finding iconic images and on multi-attribute prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ordinal Classification with Distance Regularization for Robust Brain Age Prediction. Brainomaly: Unsupervised Neurologic Disease Detection Utilizing Unannotated T1-weighted Brain MR Images. PathLDM: Text conditioned Latent Diffusion Model for Histopathology. Domain Generalization with Correlated Style Uncertainty. Semantic-aware Video Representation for Few-shot Action Recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1