{"title":"综合能源系统中期模拟中电转气装置的数学建模","authors":"D. Siface","doi":"10.23919/AEIT50178.2020.9241135","DOIUrl":null,"url":null,"abstract":"This paper presents the mathematical formulation for the modelling of Power-to-gas devices that has been included in the existing medium term Power System simulator sMTSIM. This is the first step towards the implementation of a linear mathematical model capable to describe the integrated Electricity and Gas Systems. Such kind of tools is fundamental to perform scenario analyses on the future Energy Systems: the path to a completely decarbonized world, in fact, passes through the use of low carbon syngas, produced by Power-to-gas devices. Such devices, consuming electricity to produce syngas, are also useful to reduce the impacts of a large installation of non-programmable Renewable Energy Sources on the Power System. A case study based on a 2050 scenario of the Italian Power System and characterized by a very high share of non-programmable RES generation is also presented to test the upgraded version of sMTSIM.","PeriodicalId":6689,"journal":{"name":"2020 AEIT International Annual Conference (AEIT)","volume":"38 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mathematical Modelling of Power-to-Gas Devices for the Medium Term Simulation of Integrated Energy Systems\",\"authors\":\"D. Siface\",\"doi\":\"10.23919/AEIT50178.2020.9241135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the mathematical formulation for the modelling of Power-to-gas devices that has been included in the existing medium term Power System simulator sMTSIM. This is the first step towards the implementation of a linear mathematical model capable to describe the integrated Electricity and Gas Systems. Such kind of tools is fundamental to perform scenario analyses on the future Energy Systems: the path to a completely decarbonized world, in fact, passes through the use of low carbon syngas, produced by Power-to-gas devices. Such devices, consuming electricity to produce syngas, are also useful to reduce the impacts of a large installation of non-programmable Renewable Energy Sources on the Power System. A case study based on a 2050 scenario of the Italian Power System and characterized by a very high share of non-programmable RES generation is also presented to test the upgraded version of sMTSIM.\",\"PeriodicalId\":6689,\"journal\":{\"name\":\"2020 AEIT International Annual Conference (AEIT)\",\"volume\":\"38 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 AEIT International Annual Conference (AEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/AEIT50178.2020.9241135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEIT50178.2020.9241135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mathematical Modelling of Power-to-Gas Devices for the Medium Term Simulation of Integrated Energy Systems
This paper presents the mathematical formulation for the modelling of Power-to-gas devices that has been included in the existing medium term Power System simulator sMTSIM. This is the first step towards the implementation of a linear mathematical model capable to describe the integrated Electricity and Gas Systems. Such kind of tools is fundamental to perform scenario analyses on the future Energy Systems: the path to a completely decarbonized world, in fact, passes through the use of low carbon syngas, produced by Power-to-gas devices. Such devices, consuming electricity to produce syngas, are also useful to reduce the impacts of a large installation of non-programmable Renewable Energy Sources on the Power System. A case study based on a 2050 scenario of the Italian Power System and characterized by a very high share of non-programmable RES generation is also presented to test the upgraded version of sMTSIM.