真菌合成纳米颗粒及其在植物抗病真菌中的作用

Q4 Agricultural and Biological Sciences Basrah Journal of Agricultural Sciences Pub Date : 2022-04-22 DOI:10.37077/25200860.2022.35.1.18
Eman K. Abdul-Karim, Halima Z. Hussein
{"title":"真菌合成纳米颗粒及其在植物抗病真菌中的作用","authors":"Eman K. Abdul-Karim, Halima Z. Hussein","doi":"10.37077/25200860.2022.35.1.18","DOIUrl":null,"url":null,"abstract":"This study aimed to demonstrate the activity of nanomaterials, the mechanisms of their biosynthesis, methods of measurement, and the factors that roles their biosynthesis by fungi. Moreover, focusing on their impact on host resistance against fungal pathogens. Nanometerials have been considered as one of scientific research priorities due to their new features (melting temperature, binding energy, electronic structure and catalytic activity, magnetic properties, dissolving temperature, and hardness). The performance and efficiency of nanomaterials compared to their normal state has been proven in many fields such as health care, agriculture, transportation, energy, information and communication technology. Many mechanical, chemical and physical methods were implemented to produce nanoparticles, which are considered as unsafe, expensive and environmentally dangerous. Therefore, researchers interested in biosynthesis of nanoparticles using fungi, bacteria or plants systems to make the process environmentally and economically safe. Furthermore, microorganisms such as yeasts, fungi and bacteria efficiency of converting inorganic ions into metallic nanomaterials was well studied. In agriculture, studies have confirmed impact of nanoparticles in improving plant productivity and pathogens resistance in different approaches like direct spraying on plants, soil, and stored fruits in a curative and preventive modes.","PeriodicalId":8700,"journal":{"name":"Basrah Journal of Agricultural Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Biosynthesis of Nanoparticles by Fungi and the Role of Nanoparticles in Resisting of Pathogenic Fungi to Plants\",\"authors\":\"Eman K. Abdul-Karim, Halima Z. Hussein\",\"doi\":\"10.37077/25200860.2022.35.1.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to demonstrate the activity of nanomaterials, the mechanisms of their biosynthesis, methods of measurement, and the factors that roles their biosynthesis by fungi. Moreover, focusing on their impact on host resistance against fungal pathogens. Nanometerials have been considered as one of scientific research priorities due to their new features (melting temperature, binding energy, electronic structure and catalytic activity, magnetic properties, dissolving temperature, and hardness). The performance and efficiency of nanomaterials compared to their normal state has been proven in many fields such as health care, agriculture, transportation, energy, information and communication technology. Many mechanical, chemical and physical methods were implemented to produce nanoparticles, which are considered as unsafe, expensive and environmentally dangerous. Therefore, researchers interested in biosynthesis of nanoparticles using fungi, bacteria or plants systems to make the process environmentally and economically safe. Furthermore, microorganisms such as yeasts, fungi and bacteria efficiency of converting inorganic ions into metallic nanomaterials was well studied. In agriculture, studies have confirmed impact of nanoparticles in improving plant productivity and pathogens resistance in different approaches like direct spraying on plants, soil, and stored fruits in a curative and preventive modes.\",\"PeriodicalId\":8700,\"journal\":{\"name\":\"Basrah Journal of Agricultural Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basrah Journal of Agricultural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37077/25200860.2022.35.1.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basrah Journal of Agricultural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37077/25200860.2022.35.1.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

摘要

本研究旨在证明纳米材料的活性,其生物合成的机制,测量方法和影响其生物合成的因素。此外,重点研究了它们对宿主对真菌病原体抗性的影响。纳米材料由于其新特性(熔化温度、结合能、电子结构和催化活性、磁性、溶解温度和硬度)而被认为是科学研究的重点之一。纳米材料相对于其正常状态的性能和效率已经在许多领域得到了证明,如医疗保健、农业、交通运输、能源、信息和通信技术。人们采用了许多机械、化学和物理方法来生产纳米颗粒,这些纳米颗粒被认为是不安全、昂贵且对环境有害的。因此,研究人员对利用真菌、细菌或植物系统进行纳米颗粒的生物合成感兴趣,以使该过程在环境和经济上安全。此外,酵母、真菌和细菌等微生物将无机离子转化为金属纳米材料的效率也得到了很好的研究。在农业方面,研究已经证实了纳米颗粒在提高植物生产力和病原体抗性方面的影响,如在治疗和预防模式下直接喷洒在植物、土壤和储存的水果上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Biosynthesis of Nanoparticles by Fungi and the Role of Nanoparticles in Resisting of Pathogenic Fungi to Plants
This study aimed to demonstrate the activity of nanomaterials, the mechanisms of their biosynthesis, methods of measurement, and the factors that roles their biosynthesis by fungi. Moreover, focusing on their impact on host resistance against fungal pathogens. Nanometerials have been considered as one of scientific research priorities due to their new features (melting temperature, binding energy, electronic structure and catalytic activity, magnetic properties, dissolving temperature, and hardness). The performance and efficiency of nanomaterials compared to their normal state has been proven in many fields such as health care, agriculture, transportation, energy, information and communication technology. Many mechanical, chemical and physical methods were implemented to produce nanoparticles, which are considered as unsafe, expensive and environmentally dangerous. Therefore, researchers interested in biosynthesis of nanoparticles using fungi, bacteria or plants systems to make the process environmentally and economically safe. Furthermore, microorganisms such as yeasts, fungi and bacteria efficiency of converting inorganic ions into metallic nanomaterials was well studied. In agriculture, studies have confirmed impact of nanoparticles in improving plant productivity and pathogens resistance in different approaches like direct spraying on plants, soil, and stored fruits in a curative and preventive modes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Basrah Journal of Agricultural Sciences
Basrah Journal of Agricultural Sciences Environmental Science-Pollution
CiteScore
1.20
自引率
0.00%
发文量
35
期刊最新文献
Investigation on Field Performance of Plowing and Harvesting Potatoes in Southern Baghdad Productive Performance, Hatching Egg Quality and Health Indices of Hisex Brown Laying Hens Fed Extruded Grain Amaranth Evaluating Land Suitability for Wheat Cultivation Criteria Analysis Fuzzy-AHP and Geospatial Techniques in Northern Basrah Governorate. Study of the Physical, Chemical, and Biologically Active Properties of Avocado Pulp (Persea americana), and Its Use in the Preparation of Some Functional Dairy Products Inhibitor Properties of Rue (Ruta graveolens L.) on Spermatogenesis in Guppy Poecilia reticulata Peters, 1859
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1