有限训练数据下的面部图像生成

Ethan Bevan, Jason Rafe Miller
{"title":"有限训练数据下的面部图像生成","authors":"Ethan Bevan, Jason Rafe Miller","doi":"10.55632/pwvas.v95i2.973","DOIUrl":null,"url":null,"abstract":"Deep learning models have a wide number of applications including generating realistic-looking images. These models typically require lots of data, but we wanted to explore how much quality is sacrificed by using smaller amounts of data. We built several models and trained them at different dataset sizes, then we assessed the quality of the generated images with the widely used FID measure. As expected, we measured an inverse correlation of -0.7 between image quality and training set size. However, we observed that the small-training-set results had problems not detectable by this experiment. We therefore present an experimental design for a follow-up study that would further explore the lower limits of training set size. These experiments are important for bringing us closer to understanding how much data is needed to train a successful generative model.","PeriodicalId":92280,"journal":{"name":"Proceedings of the West Virginia Academy of Science","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facial Image Generation with Limited Training Data\",\"authors\":\"Ethan Bevan, Jason Rafe Miller\",\"doi\":\"10.55632/pwvas.v95i2.973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning models have a wide number of applications including generating realistic-looking images. These models typically require lots of data, but we wanted to explore how much quality is sacrificed by using smaller amounts of data. We built several models and trained them at different dataset sizes, then we assessed the quality of the generated images with the widely used FID measure. As expected, we measured an inverse correlation of -0.7 between image quality and training set size. However, we observed that the small-training-set results had problems not detectable by this experiment. We therefore present an experimental design for a follow-up study that would further explore the lower limits of training set size. These experiments are important for bringing us closer to understanding how much data is needed to train a successful generative model.\",\"PeriodicalId\":92280,\"journal\":{\"name\":\"Proceedings of the West Virginia Academy of Science\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the West Virginia Academy of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55632/pwvas.v95i2.973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the West Virginia Academy of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55632/pwvas.v95i2.973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习模型具有广泛的应用,包括生成逼真的图像。这些模型通常需要大量数据,但我们想要探索使用少量数据会牺牲多少质量。我们建立了几个模型,并在不同的数据集大小下训练它们,然后我们使用广泛使用的FID测量来评估生成图像的质量。正如预期的那样,我们测量到图像质量和训练集大小之间的负相关为-0.7。然而,我们观察到小训练集结果存在本实验无法检测到的问题。因此,我们提出了一个后续研究的实验设计,以进一步探索训练集大小的下限。这些实验对于让我们更了解训练一个成功的生成模型需要多少数据是很重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facial Image Generation with Limited Training Data
Deep learning models have a wide number of applications including generating realistic-looking images. These models typically require lots of data, but we wanted to explore how much quality is sacrificed by using smaller amounts of data. We built several models and trained them at different dataset sizes, then we assessed the quality of the generated images with the widely used FID measure. As expected, we measured an inverse correlation of -0.7 between image quality and training set size. However, we observed that the small-training-set results had problems not detectable by this experiment. We therefore present an experimental design for a follow-up study that would further explore the lower limits of training set size. These experiments are important for bringing us closer to understanding how much data is needed to train a successful generative model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Symmetry Equivalents of the Weak Value Measurement Pointer Hamiltonian West Virginia Human Whole-Body Donors in Undergraduate Biology Education at Radford University Geographical Impact of Human Gift Registries in West Virginia: A Model for Centralized Resources in Human Anatomy Education Geographical Impact of Human Gift Registries in West Virginia: A Model for Centralized Resources in Human Anatomy Education Evaluation of sample collection containers for selenium quantification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1