水蒸气诱导的空气旋转特征

R. Marks
{"title":"水蒸气诱导的空气旋转特征","authors":"R. Marks","doi":"10.26491/MHWM/104634","DOIUrl":null,"url":null,"abstract":"In order to study the rotational features induced by evaporating water several laboratory experiments were conducted with airborne rotary detection discs made of absorbent cotton wool and ultralight polyurethane foam discs. Measurements indicated that water vapor develops and transits into the air an upwardly directed counterclockwise rotary motion in the Northern Hemisphere, and a clockwise motion in the Southern Hemisphere. Additionally, measurements of the thermal structure of the air/water interface indicated that evaporating water may gather rotational momentum in the warmer subsurface layer. The conducted observations suggest that the process of water evaporation may be based on the grouping of some coherently spiraling molecules in the liquid phase. The interacting molecules combine their partial rotational momentums, thus allowing the top molecule to transit via the surface tension microlayer and become airborne. At the moment of evaporation, the gathered rotational energy is taken over by the free bi-hydrogen rotor-arm of the evaporating molecule that starts to revolve. Next, the water vapor-induced rotational share of the kinetic energy is likely to be redistributed among other gaseous molecules and transferred into heat (during condensation) that further energizes the airborne convective loops. In order to confirm the rotary effects induced by water vapor, several field experiments were conducted with airborne rotary detection ribbons in the Northern Hemisphere. The observations confirmed that a more enhanced counterclockwise spiraling motion of air is found with air currents under atmospheric lows of a higher relative humidity, while weaker and clockwise directed rotary dominates under atmospheric highs.","PeriodicalId":42852,"journal":{"name":"Meteorology Hydrology and Water Management-Research and Operational Applications","volume":"30 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water Vapor Induced Airborne Rotational Features\",\"authors\":\"R. Marks\",\"doi\":\"10.26491/MHWM/104634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to study the rotational features induced by evaporating water several laboratory experiments were conducted with airborne rotary detection discs made of absorbent cotton wool and ultralight polyurethane foam discs. Measurements indicated that water vapor develops and transits into the air an upwardly directed counterclockwise rotary motion in the Northern Hemisphere, and a clockwise motion in the Southern Hemisphere. Additionally, measurements of the thermal structure of the air/water interface indicated that evaporating water may gather rotational momentum in the warmer subsurface layer. The conducted observations suggest that the process of water evaporation may be based on the grouping of some coherently spiraling molecules in the liquid phase. The interacting molecules combine their partial rotational momentums, thus allowing the top molecule to transit via the surface tension microlayer and become airborne. At the moment of evaporation, the gathered rotational energy is taken over by the free bi-hydrogen rotor-arm of the evaporating molecule that starts to revolve. Next, the water vapor-induced rotational share of the kinetic energy is likely to be redistributed among other gaseous molecules and transferred into heat (during condensation) that further energizes the airborne convective loops. In order to confirm the rotary effects induced by water vapor, several field experiments were conducted with airborne rotary detection ribbons in the Northern Hemisphere. The observations confirmed that a more enhanced counterclockwise spiraling motion of air is found with air currents under atmospheric lows of a higher relative humidity, while weaker and clockwise directed rotary dominates under atmospheric highs.\",\"PeriodicalId\":42852,\"journal\":{\"name\":\"Meteorology Hydrology and Water Management-Research and Operational Applications\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteorology Hydrology and Water Management-Research and Operational Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26491/MHWM/104634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorology Hydrology and Water Management-Research and Operational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26491/MHWM/104634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

为了研究蒸发水分引起的旋转特性,用吸水性棉毛和超轻聚氨酯泡沫制成的机载旋转检测盘进行了室内实验。测量结果表明,水蒸气在北半球以逆时针方向向上的旋转运动发展并进入空气,而在南半球则以顺时针方向运动。此外,对空气/水界面热结构的测量表明,蒸发的水可能在较温暖的次表层中聚集旋转动量。所进行的观察表明,水的蒸发过程可能是基于液相中一些相干螺旋分子的分组。相互作用的分子结合了它们的部分旋转动量,从而允许顶部的分子通过表面张力微层传输并成为空气。在蒸发的那一刻,聚集的旋转能量被蒸发分子的自由双氢转子臂接管,开始旋转。其次,水蒸气引起的动能的旋转部分很可能在其他气体分子中重新分配,并(在冷凝期间)转化为热量,进一步为空气中的对流回路提供能量。为了确认水汽引起的旋转效应,在北半球用机载旋转探测带进行了多次野外试验。观测结果证实,在相对湿度较高的大气低气压下,气流的逆时针旋转运动更强,而在大气高气压下,气流的顺时针旋转运动更弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Water Vapor Induced Airborne Rotational Features
In order to study the rotational features induced by evaporating water several laboratory experiments were conducted with airborne rotary detection discs made of absorbent cotton wool and ultralight polyurethane foam discs. Measurements indicated that water vapor develops and transits into the air an upwardly directed counterclockwise rotary motion in the Northern Hemisphere, and a clockwise motion in the Southern Hemisphere. Additionally, measurements of the thermal structure of the air/water interface indicated that evaporating water may gather rotational momentum in the warmer subsurface layer. The conducted observations suggest that the process of water evaporation may be based on the grouping of some coherently spiraling molecules in the liquid phase. The interacting molecules combine their partial rotational momentums, thus allowing the top molecule to transit via the surface tension microlayer and become airborne. At the moment of evaporation, the gathered rotational energy is taken over by the free bi-hydrogen rotor-arm of the evaporating molecule that starts to revolve. Next, the water vapor-induced rotational share of the kinetic energy is likely to be redistributed among other gaseous molecules and transferred into heat (during condensation) that further energizes the airborne convective loops. In order to confirm the rotary effects induced by water vapor, several field experiments were conducted with airborne rotary detection ribbons in the Northern Hemisphere. The observations confirmed that a more enhanced counterclockwise spiraling motion of air is found with air currents under atmospheric lows of a higher relative humidity, while weaker and clockwise directed rotary dominates under atmospheric highs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
期刊最新文献
Hydrologic drought characteristics of selected basins in various climate zones of Lebanon Comparison and combination of interpolation methods for daily precipitation in Poland: evaluation using the correlation coefficient and correspondence ratio Non-homogeneity of hydrometric data and estimating the rating curve Trends and fluctuations of river ice regimes in the Prypiat Basin, within Ukraine Assessing the impact of climate change on discharge in the Horyn River basin by analyzing precipitation and temperature data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1