基于自适应采样和自关注的点云语义分割网络

Q3 Arts and Humanities Icon Pub Date : 2023-03-01 DOI:10.1109/ICNLP58431.2023.00018
Da Ai, Ce Xu, Xiaoyang Zhang, Yu Ai, Yansong Bai, Y. Liu
{"title":"基于自适应采样和自关注的点云语义分割网络","authors":"Da Ai, Ce Xu, Xiaoyang Zhang, Yu Ai, Yansong Bai, Y. Liu","doi":"10.1109/ICNLP58431.2023.00018","DOIUrl":null,"url":null,"abstract":"Point cloud semantic segmentation is widely used in scene analysis. We propose a point cloud semantic segmentation network based on adaptive random sampling and self-attention. The network extracts local centroids using random sampling, enriches feature information of the centroids using the proposed adaptive optimization module, and then learns correlations and differences between feature vectors using a feature aggregation module based on the self-attentiveness mechanism to make feature cross-fertilization more adequate, which effectively improves the performance of semantic segmentation. Experimental results on S3DIS show that the network consumes less computing time, but improves the Mean Intersection over Union (mIou) by 14.4% and overall accuracy (oAcc) by 6.4% over the baseline network PointNet++.","PeriodicalId":53637,"journal":{"name":"Icon","volume":"11 1","pages":"60-64"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ASSA-Net: Semantic Segmentation Network for Point Clouds Based on Adaptive Sampling and Self-Attention\",\"authors\":\"Da Ai, Ce Xu, Xiaoyang Zhang, Yu Ai, Yansong Bai, Y. Liu\",\"doi\":\"10.1109/ICNLP58431.2023.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Point cloud semantic segmentation is widely used in scene analysis. We propose a point cloud semantic segmentation network based on adaptive random sampling and self-attention. The network extracts local centroids using random sampling, enriches feature information of the centroids using the proposed adaptive optimization module, and then learns correlations and differences between feature vectors using a feature aggregation module based on the self-attentiveness mechanism to make feature cross-fertilization more adequate, which effectively improves the performance of semantic segmentation. Experimental results on S3DIS show that the network consumes less computing time, but improves the Mean Intersection over Union (mIou) by 14.4% and overall accuracy (oAcc) by 6.4% over the baseline network PointNet++.\",\"PeriodicalId\":53637,\"journal\":{\"name\":\"Icon\",\"volume\":\"11 1\",\"pages\":\"60-64\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNLP58431.2023.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNLP58431.2023.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

点云语义分割在场景分析中有着广泛的应用。提出了一种基于自适应随机采样和自关注的点云语义分割网络。该网络采用随机采样的方法提取局部质心,利用提出的自适应优化模块丰富质心的特征信息,然后利用基于自关注机制的特征聚合模块学习特征向量之间的相关性和差异性,使特征相互作用更加充分,有效地提高了语义分割的性能。在S3DIS上的实验结果表明,该网络消耗的计算时间更少,但比基线网络PointNet++提高了14.4%的平均交联率(mIou)和6.4%的总精度(oAcc)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ASSA-Net: Semantic Segmentation Network for Point Clouds Based on Adaptive Sampling and Self-Attention
Point cloud semantic segmentation is widely used in scene analysis. We propose a point cloud semantic segmentation network based on adaptive random sampling and self-attention. The network extracts local centroids using random sampling, enriches feature information of the centroids using the proposed adaptive optimization module, and then learns correlations and differences between feature vectors using a feature aggregation module based on the self-attentiveness mechanism to make feature cross-fertilization more adequate, which effectively improves the performance of semantic segmentation. Experimental results on S3DIS show that the network consumes less computing time, but improves the Mean Intersection over Union (mIou) by 14.4% and overall accuracy (oAcc) by 6.4% over the baseline network PointNet++.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Icon
Icon Arts and Humanities-History and Philosophy of Science
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
Long-term Coherent Accumulation Algorithm Based on Radar Altimeter Deep Composite Kernels ELM Based on Spatial Feature Extraction for Hyperspectral Vegetation Image Classification Research based on improved SSD target detection algorithm CON-GAN-BERT: combining Contrastive Learning with Generative Adversarial Nets for Few-Shot Sentiment Classification A Two Stage Learning Algorithm for Hyperspectral Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1