类预凝胶系统中具有线性通信代价的连通组件计算

Xing Feng, Lijun Chang, Xuemin Lin, Lu Qin, W. Zhang
{"title":"类预凝胶系统中具有线性通信代价的连通组件计算","authors":"Xing Feng, Lijun Chang, Xuemin Lin, Lu Qin, W. Zhang","doi":"10.1109/ICDE.2016.7498231","DOIUrl":null,"url":null,"abstract":"The paper studies two fundamental problems in graph analytics: computing Connected Components (CCs) and computing BiConnected Components (BCCs) of a graph. With the recent advent of Big Data, developing effcient distributed algorithms for computing CCs and BCCs of a big graph has received increasing interests. As with the existing research efforts, in this paper we focus on the Pregel programming model, while the techniques may be extended to other programming models including MapReduce and Spark. The state-of-the-art techniques for computing CCs and BCCs in Pregel incur O(m × #supersteps) total costs for both data communication and computation, where m is the number of edges in a graph and #supersteps is the number of supersteps. Since the network communication speed is usually much slower than the computation speed, communication costs are the dominant costs of the total running time in the existing techniques. In this paper, we propose a new paradigm based on graph decomposition to reduce the total communication costs from O(m×#supersteps) to O(m), for both computing CCs and computing BCCs. Moreover, the total computation costs of our techniques are smaller than that of the existing techniques in practice, though theoretically they are almost the same. Comprehensive empirical studies demonstrate that our approaches can outperform the existing techniques by one order of magnitude regarding the total running time.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"63 1","pages":"85-96"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Computing Connected Components with linear communication cost in pregel-like systems\",\"authors\":\"Xing Feng, Lijun Chang, Xuemin Lin, Lu Qin, W. Zhang\",\"doi\":\"10.1109/ICDE.2016.7498231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper studies two fundamental problems in graph analytics: computing Connected Components (CCs) and computing BiConnected Components (BCCs) of a graph. With the recent advent of Big Data, developing effcient distributed algorithms for computing CCs and BCCs of a big graph has received increasing interests. As with the existing research efforts, in this paper we focus on the Pregel programming model, while the techniques may be extended to other programming models including MapReduce and Spark. The state-of-the-art techniques for computing CCs and BCCs in Pregel incur O(m × #supersteps) total costs for both data communication and computation, where m is the number of edges in a graph and #supersteps is the number of supersteps. Since the network communication speed is usually much slower than the computation speed, communication costs are the dominant costs of the total running time in the existing techniques. In this paper, we propose a new paradigm based on graph decomposition to reduce the total communication costs from O(m×#supersteps) to O(m), for both computing CCs and computing BCCs. Moreover, the total computation costs of our techniques are smaller than that of the existing techniques in practice, though theoretically they are almost the same. Comprehensive empirical studies demonstrate that our approaches can outperform the existing techniques by one order of magnitude regarding the total running time.\",\"PeriodicalId\":6883,\"journal\":{\"name\":\"2016 IEEE 32nd International Conference on Data Engineering (ICDE)\",\"volume\":\"63 1\",\"pages\":\"85-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 32nd International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2016.7498231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文研究了图分析中的两个基本问题:图的连通分量(cc)和双连通分量(bcc)。随着近年来大数据的出现,开发高效的分布式算法来计算大图的cc和bcc受到越来越多的关注。与现有的研究成果一样,本文主要关注Pregel编程模型,而这些技术可以扩展到其他编程模型,包括MapReduce和Spark。在Pregel中,计算cc和bcc的最先进技术在数据通信和计算方面需要O(m × #supersteps)的总成本,其中m是图中边的数量,#supersteps是超步骤的数量。由于网络通信速度通常比计算速度慢得多,因此在现有技术中,通信成本是总运行时间的主要成本。在本文中,我们提出了一种基于图分解的新范式,将计算cc和计算bcc的总通信成本从O(mx# supersteps)降低到O(m)。此外,我们的技术的总计算成本比实践中的现有技术要小,尽管理论上它们几乎相同。综合实证研究表明,我们的方法在总运行时间方面比现有技术高出一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computing Connected Components with linear communication cost in pregel-like systems
The paper studies two fundamental problems in graph analytics: computing Connected Components (CCs) and computing BiConnected Components (BCCs) of a graph. With the recent advent of Big Data, developing effcient distributed algorithms for computing CCs and BCCs of a big graph has received increasing interests. As with the existing research efforts, in this paper we focus on the Pregel programming model, while the techniques may be extended to other programming models including MapReduce and Spark. The state-of-the-art techniques for computing CCs and BCCs in Pregel incur O(m × #supersteps) total costs for both data communication and computation, where m is the number of edges in a graph and #supersteps is the number of supersteps. Since the network communication speed is usually much slower than the computation speed, communication costs are the dominant costs of the total running time in the existing techniques. In this paper, we propose a new paradigm based on graph decomposition to reduce the total communication costs from O(m×#supersteps) to O(m), for both computing CCs and computing BCCs. Moreover, the total computation costs of our techniques are smaller than that of the existing techniques in practice, though theoretically they are almost the same. Comprehensive empirical studies demonstrate that our approaches can outperform the existing techniques by one order of magnitude regarding the total running time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data profiling SEED: A system for entity exploration and debugging in large-scale knowledge graphs TemProRA: Top-k temporal-probabilistic results analysis Durable graph pattern queries on historical graphs SCouT: Scalable coupled matrix-tensor factorization - algorithm and discoveries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1