{"title":"正则化Stokeslets方法中的二维力约束","authors":"O. Maxian, Wanda Strychalski","doi":"10.2140/camcos.2019.14.149","DOIUrl":null,"url":null,"abstract":"For many biological systems that involve elastic structures immersed in fluid, small length scales mean that inertial effects are also small, and the fluid obeys the Stokes equations. One way to solve the model equations representing such systems is through the Stokeslet, the fundamental solution to the Stokes equations, and its regularized counterpart, which treats the singularity of the velocity at points where force is applied. In two dimensions, an additional complication arises from Stokes' paradox, whereby the velocity from the Stokeslet is unbounded at infinity when the net hydrodynamic force within the domain is nonzero, invalidating the solutions. A straightforward computationally inexpensive method is presented for obtaining valid solutions to the Stokes equations for net nonzero forcing. The approach is based on imposing a mean zero velocity condition on a large curve that surrounds the domain of interest. The condition is shown to be equivalent to a net-zero force condition, where the opposite forces are applied on the large curve. The numerical method is applied to models of cellular motility and blebbing.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"2D force constraints in the method of regularized Stokeslets\",\"authors\":\"O. Maxian, Wanda Strychalski\",\"doi\":\"10.2140/camcos.2019.14.149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For many biological systems that involve elastic structures immersed in fluid, small length scales mean that inertial effects are also small, and the fluid obeys the Stokes equations. One way to solve the model equations representing such systems is through the Stokeslet, the fundamental solution to the Stokes equations, and its regularized counterpart, which treats the singularity of the velocity at points where force is applied. In two dimensions, an additional complication arises from Stokes' paradox, whereby the velocity from the Stokeslet is unbounded at infinity when the net hydrodynamic force within the domain is nonzero, invalidating the solutions. A straightforward computationally inexpensive method is presented for obtaining valid solutions to the Stokes equations for net nonzero forcing. The approach is based on imposing a mean zero velocity condition on a large curve that surrounds the domain of interest. The condition is shown to be equivalent to a net-zero force condition, where the opposite forces are applied on the large curve. The numerical method is applied to models of cellular motility and blebbing.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/camcos.2019.14.149\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/camcos.2019.14.149","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
2D force constraints in the method of regularized Stokeslets
For many biological systems that involve elastic structures immersed in fluid, small length scales mean that inertial effects are also small, and the fluid obeys the Stokes equations. One way to solve the model equations representing such systems is through the Stokeslet, the fundamental solution to the Stokes equations, and its regularized counterpart, which treats the singularity of the velocity at points where force is applied. In two dimensions, an additional complication arises from Stokes' paradox, whereby the velocity from the Stokeslet is unbounded at infinity when the net hydrodynamic force within the domain is nonzero, invalidating the solutions. A straightforward computationally inexpensive method is presented for obtaining valid solutions to the Stokes equations for net nonzero forcing. The approach is based on imposing a mean zero velocity condition on a large curve that surrounds the domain of interest. The condition is shown to be equivalent to a net-zero force condition, where the opposite forces are applied on the large curve. The numerical method is applied to models of cellular motility and blebbing.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.