用于超低功耗计算硬件的自旋神经元

M. Sharad, G. Panagopoulos, K. Roy
{"title":"用于超低功耗计算硬件的自旋神经元","authors":"M. Sharad, G. Panagopoulos, K. Roy","doi":"10.1109/DRC.2012.6257039","DOIUrl":null,"url":null,"abstract":"We propose a device model for neuron based on lateral spin valve (LSV) that constitutes of multiple input magnets, connected to an output magnet, using metal channels. The low-resistance, magneto-metallic neuron can operate at a small terminal voltage of ~20mV, while performing computation upon current-mode inputs. The spin-based neurons can be integrated with CMOS to realize ultra low-power data processing hardware, based on neural networks (NN), for different classes of applications like, cognitive computing, programmable Boolean/non-Boolean logic and analog and digital signal processing [1, 2]. In this work we present analog image acquisition and processing as an example. Results based on device-circuit co-simulation framework show that a spin-CMOS hybrid design, employing the proposed neuron, can achieve ~100x lower energy consumption per computation-frame, as compared to the state of art CMOS designs employing conventional analog circuits [13].","PeriodicalId":6808,"journal":{"name":"70th Device Research Conference","volume":"9 1","pages":"221-222"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Spin neuron for ultra low power computational hardware\",\"authors\":\"M. Sharad, G. Panagopoulos, K. Roy\",\"doi\":\"10.1109/DRC.2012.6257039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a device model for neuron based on lateral spin valve (LSV) that constitutes of multiple input magnets, connected to an output magnet, using metal channels. The low-resistance, magneto-metallic neuron can operate at a small terminal voltage of ~20mV, while performing computation upon current-mode inputs. The spin-based neurons can be integrated with CMOS to realize ultra low-power data processing hardware, based on neural networks (NN), for different classes of applications like, cognitive computing, programmable Boolean/non-Boolean logic and analog and digital signal processing [1, 2]. In this work we present analog image acquisition and processing as an example. Results based on device-circuit co-simulation framework show that a spin-CMOS hybrid design, employing the proposed neuron, can achieve ~100x lower energy consumption per computation-frame, as compared to the state of art CMOS designs employing conventional analog circuits [13].\",\"PeriodicalId\":6808,\"journal\":{\"name\":\"70th Device Research Conference\",\"volume\":\"9 1\",\"pages\":\"221-222\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"70th Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2012.6257039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"70th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2012.6257039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

我们提出了一种基于横向自旋阀(LSV)的神经元器件模型,该模型由多个输入磁铁组成,使用金属通道连接到输出磁铁。低电阻、磁金属神经元可以在~20mV的小端电压下工作,同时在电流模式输入上进行计算。基于自旋的神经元可以与CMOS集成,实现基于神经网络(NN)的超低功耗数据处理硬件,用于不同类别的应用,如认知计算,可编程布尔/非布尔逻辑以及模拟和数字信号处理[1,2]。在这项工作中,我们以模拟图像的采集和处理为例。基于器件电路联合仿真框架的结果表明,与采用传统模拟电路的先进CMOS设计相比,采用所提出神经元的自旋CMOS混合设计可以实现每计算帧能耗降低约100倍[13]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spin neuron for ultra low power computational hardware
We propose a device model for neuron based on lateral spin valve (LSV) that constitutes of multiple input magnets, connected to an output magnet, using metal channels. The low-resistance, magneto-metallic neuron can operate at a small terminal voltage of ~20mV, while performing computation upon current-mode inputs. The spin-based neurons can be integrated with CMOS to realize ultra low-power data processing hardware, based on neural networks (NN), for different classes of applications like, cognitive computing, programmable Boolean/non-Boolean logic and analog and digital signal processing [1, 2]. In this work we present analog image acquisition and processing as an example. Results based on device-circuit co-simulation framework show that a spin-CMOS hybrid design, employing the proposed neuron, can achieve ~100x lower energy consumption per computation-frame, as compared to the state of art CMOS designs employing conventional analog circuits [13].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancement-mode Al045Ga0.55N/Al0.3Ga0.7N High Electron Mobility Transistor with p-Al0.3Ga0.7N Gate CMOS-compatible Ti/Al ohmic contacts (R c ° C) Role of screening, heating, and dielectrics on high-field transport in graphene Electrical control of nuclear-spin-induced Hall voltage in an inverted InAs heterostructure Piezotronics and piezo-phototronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1