对树状结构数据集合进行匿名化

Olga Gkountouna, Manolis Terrovitis
{"title":"对树状结构数据集合进行匿名化","authors":"Olga Gkountouna, Manolis Terrovitis","doi":"10.1109/ICDE.2016.7498404","DOIUrl":null,"url":null,"abstract":"Collections of real-world data usually have implicit or explicit structural relations. For example, databases link records through foreign keys, and XML documents express associations between different values through syntax. Privacy preservation, until now, has focused either on data with a very simple structure, e.g. relational tables, or on data with very complex structure e.g. social network graphs, but has ignored intermediate cases, which are the most frequent in practice. In this work, we focus on tree structured data. The paper defines k(m;n)-anonymity, which provides protection against identity disclosure and proposes a greedy anonymization heuristic that is able to sanitize large datasets. The algorithm and the quality of the anonymization are evaluated experimentally.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"52 1","pages":"1520-1521"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Anonymizing collections of tree-structured data\",\"authors\":\"Olga Gkountouna, Manolis Terrovitis\",\"doi\":\"10.1109/ICDE.2016.7498404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collections of real-world data usually have implicit or explicit structural relations. For example, databases link records through foreign keys, and XML documents express associations between different values through syntax. Privacy preservation, until now, has focused either on data with a very simple structure, e.g. relational tables, or on data with very complex structure e.g. social network graphs, but has ignored intermediate cases, which are the most frequent in practice. In this work, we focus on tree structured data. The paper defines k(m;n)-anonymity, which provides protection against identity disclosure and proposes a greedy anonymization heuristic that is able to sanitize large datasets. The algorithm and the quality of the anonymization are evaluated experimentally.\",\"PeriodicalId\":6883,\"journal\":{\"name\":\"2016 IEEE 32nd International Conference on Data Engineering (ICDE)\",\"volume\":\"52 1\",\"pages\":\"1520-1521\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 32nd International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2016.7498404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

实际数据的集合通常具有隐式或显式的结构关系。例如,数据库通过外键链接记录,XML文档通过语法表达不同值之间的关联。到目前为止,隐私保护要么集中在结构非常简单的数据上,比如关系表,要么集中在结构非常复杂的数据上,比如社交网络图,但是忽略了在实践中最常见的中间情况。在这项工作中,我们专注于树结构数据。本文定义了k(m;n)-匿名,它提供了防止身份泄露的保护,并提出了一种能够对大型数据集进行清理的贪婪匿名启发式算法。通过实验对算法和匿名化质量进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anonymizing collections of tree-structured data
Collections of real-world data usually have implicit or explicit structural relations. For example, databases link records through foreign keys, and XML documents express associations between different values through syntax. Privacy preservation, until now, has focused either on data with a very simple structure, e.g. relational tables, or on data with very complex structure e.g. social network graphs, but has ignored intermediate cases, which are the most frequent in practice. In this work, we focus on tree structured data. The paper defines k(m;n)-anonymity, which provides protection against identity disclosure and proposes a greedy anonymization heuristic that is able to sanitize large datasets. The algorithm and the quality of the anonymization are evaluated experimentally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data profiling SEED: A system for entity exploration and debugging in large-scale knowledge graphs TemProRA: Top-k temporal-probabilistic results analysis Durable graph pattern queries on historical graphs SCouT: Scalable coupled matrix-tensor factorization - algorithm and discoveries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1