{"title":"基于熔融沉积建模的3D打印电气互连和电路","authors":"Habib Nassar, R. Dahiya","doi":"10.1002/aisy.202100102","DOIUrl":null,"url":null,"abstract":"Multimaterial 3D printing in electronics is expanding due to the ability to realize geometrically complex systems with simplified processes compared with conventional printed circuit board. Herein, the feasibility of using a copper‐based filament to realize 3D circuits with planar and vertical interconnections is presented. The resistivity of the tracks (1–3 mm wide) is studied with reference to printing parameters and orientation. Using lateral infill for 1 mm tracks offers lower resistance compared with longitudinal infill (≈75%). For wider tracks, the effect of infill orientation on resistance diminishes. The evaluation of tracks embedded in polylactic acid shows a drop in maximum current (to ≈11 mA) compared with exposed tracks (≈16 mA). There is no observed correlation between electrical performance and number of embedding layers. However, a significant correlation is observed between the tracks’ resistance and the amount of time the filament remains in the heated nozzle. This in‐depth study leads to optimum resolution to realize conductive tracks of 0.67 mm thickness and the first integration of fused deposition modeling (FDM)‐printed conductive traces with small‐outline integrated circuits to open a pathway for higher‐density 3D printed circuits. Finally, the transmission of digital data by a 3D printed circuit is demonstrated.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Fused Deposition Modeling‐Based 3D‐Printed Electrical Interconnects and Circuits\",\"authors\":\"Habib Nassar, R. Dahiya\",\"doi\":\"10.1002/aisy.202100102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimaterial 3D printing in electronics is expanding due to the ability to realize geometrically complex systems with simplified processes compared with conventional printed circuit board. Herein, the feasibility of using a copper‐based filament to realize 3D circuits with planar and vertical interconnections is presented. The resistivity of the tracks (1–3 mm wide) is studied with reference to printing parameters and orientation. Using lateral infill for 1 mm tracks offers lower resistance compared with longitudinal infill (≈75%). For wider tracks, the effect of infill orientation on resistance diminishes. The evaluation of tracks embedded in polylactic acid shows a drop in maximum current (to ≈11 mA) compared with exposed tracks (≈16 mA). There is no observed correlation between electrical performance and number of embedding layers. However, a significant correlation is observed between the tracks’ resistance and the amount of time the filament remains in the heated nozzle. This in‐depth study leads to optimum resolution to realize conductive tracks of 0.67 mm thickness and the first integration of fused deposition modeling (FDM)‐printed conductive traces with small‐outline integrated circuits to open a pathway for higher‐density 3D printed circuits. Finally, the transmission of digital data by a 3D printed circuit is demonstrated.\",\"PeriodicalId\":7187,\"journal\":{\"name\":\"Advanced Intelligent Systems\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aisy.202100102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202100102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fused Deposition Modeling‐Based 3D‐Printed Electrical Interconnects and Circuits
Multimaterial 3D printing in electronics is expanding due to the ability to realize geometrically complex systems with simplified processes compared with conventional printed circuit board. Herein, the feasibility of using a copper‐based filament to realize 3D circuits with planar and vertical interconnections is presented. The resistivity of the tracks (1–3 mm wide) is studied with reference to printing parameters and orientation. Using lateral infill for 1 mm tracks offers lower resistance compared with longitudinal infill (≈75%). For wider tracks, the effect of infill orientation on resistance diminishes. The evaluation of tracks embedded in polylactic acid shows a drop in maximum current (to ≈11 mA) compared with exposed tracks (≈16 mA). There is no observed correlation between electrical performance and number of embedding layers. However, a significant correlation is observed between the tracks’ resistance and the amount of time the filament remains in the heated nozzle. This in‐depth study leads to optimum resolution to realize conductive tracks of 0.67 mm thickness and the first integration of fused deposition modeling (FDM)‐printed conductive traces with small‐outline integrated circuits to open a pathway for higher‐density 3D printed circuits. Finally, the transmission of digital data by a 3D printed circuit is demonstrated.