一种联合无线光传输网络的资源分配方案

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Big Data Pub Date : 2023-08-03 DOI:10.1109/icABCD59051.2023.10220537
Mlungisi Molefe, K. Sibiya, B. Nleya
{"title":"一种联合无线光传输网络的资源分配方案","authors":"Mlungisi Molefe, K. Sibiya, B. Nleya","doi":"10.1109/icABCD59051.2023.10220537","DOIUrl":null,"url":null,"abstract":"As the future of networking dives into a new era of connecting every single physical device into the internet termed Internet of Things (loT), this significantly means a rapid increase in the number of online connected devices, which leads to more bandwidth hungry and data consuming devices. The fifth generation (5G) of mobile communication has been deployed already in multiple countries, therefore researchers have migrated their focus to the sixth generation (6G) of mobile communication to cater for extensive coverage and massive number of loT devices. A promising architecture and technology to cope with massive number of online devices and extensive coverage is a joint optical wireless transport network which offers comparably ultra-high systems capacity and extremely low latency while maintaining an improved quality of service. Furthermore, an optical wireless transport network can accommodate high speed mobility for frequently moving end user devices which is essential for 6G. In this paper our focus is to explore and propose an ultimate optical wireless transport network architecture scheme that will cater for loT as well as networks beyond 5G. We thus propose an innovative Optical-Backhaul and Wireless Access (OBWA) network architecture as a favorable solution for future networks. We further present a joint channel and route allocation (JCRA) scheme for achieving optimal quality of experience. Performance evaluation of the proposed JCRA scheme for OBW A network architecture show a significant improvement in the network throughput as well as the network end-to-end delay despite varying load traffic or varying flow channels.","PeriodicalId":51314,"journal":{"name":"Big Data","volume":"28 1","pages":"1-7"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Resources Allocation Scheme For Joint Optical Wireless Transport Networks\",\"authors\":\"Mlungisi Molefe, K. Sibiya, B. Nleya\",\"doi\":\"10.1109/icABCD59051.2023.10220537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the future of networking dives into a new era of connecting every single physical device into the internet termed Internet of Things (loT), this significantly means a rapid increase in the number of online connected devices, which leads to more bandwidth hungry and data consuming devices. The fifth generation (5G) of mobile communication has been deployed already in multiple countries, therefore researchers have migrated their focus to the sixth generation (6G) of mobile communication to cater for extensive coverage and massive number of loT devices. A promising architecture and technology to cope with massive number of online devices and extensive coverage is a joint optical wireless transport network which offers comparably ultra-high systems capacity and extremely low latency while maintaining an improved quality of service. Furthermore, an optical wireless transport network can accommodate high speed mobility for frequently moving end user devices which is essential for 6G. In this paper our focus is to explore and propose an ultimate optical wireless transport network architecture scheme that will cater for loT as well as networks beyond 5G. We thus propose an innovative Optical-Backhaul and Wireless Access (OBWA) network architecture as a favorable solution for future networks. We further present a joint channel and route allocation (JCRA) scheme for achieving optimal quality of experience. Performance evaluation of the proposed JCRA scheme for OBW A network architecture show a significant improvement in the network throughput as well as the network end-to-end delay despite varying load traffic or varying flow channels.\",\"PeriodicalId\":51314,\"journal\":{\"name\":\"Big Data\",\"volume\":\"28 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/icABCD59051.2023.10220537\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/icABCD59051.2023.10220537","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

随着网络的未来进入一个将每个物理设备连接到互联网的新时代,即物联网(loT),这意味着在线连接设备的数量将迅速增加,这将导致更多的带宽消耗和数据消耗设备。第五代(5G)移动通信已经在多个国家部署,因此研究人员将重点转移到第六代(6G)移动通信上,以满足广泛覆盖和大量loT设备的需求。联合光无线传输网络是一种很有前途的架构和技术,可以处理大量的在线设备和广泛的覆盖范围,它在保持改进的服务质量的同时提供相对超高的系统容量和极低的延迟。此外,光无线传输网络可以为频繁移动的终端用户设备提供高速移动性,这对6G至关重要。在本文中,我们的重点是探索和提出一个最终的光无线传输网络架构方案,以满足loT以及5G以上的网络。因此,我们提出了一种创新的光回程和无线接入(OBWA)网络架构,作为未来网络的有利解决方案。我们进一步提出了一种联合信道和路由分配(JCRA)方案,以实现最佳的体验质量。基于OBW - A网络架构的JCRA方案的性能评估表明,在不同负载流量或不同流通道的情况下,该方案在网络吞吐量和网络端到端延迟方面都有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Resources Allocation Scheme For Joint Optical Wireless Transport Networks
As the future of networking dives into a new era of connecting every single physical device into the internet termed Internet of Things (loT), this significantly means a rapid increase in the number of online connected devices, which leads to more bandwidth hungry and data consuming devices. The fifth generation (5G) of mobile communication has been deployed already in multiple countries, therefore researchers have migrated their focus to the sixth generation (6G) of mobile communication to cater for extensive coverage and massive number of loT devices. A promising architecture and technology to cope with massive number of online devices and extensive coverage is a joint optical wireless transport network which offers comparably ultra-high systems capacity and extremely low latency while maintaining an improved quality of service. Furthermore, an optical wireless transport network can accommodate high speed mobility for frequently moving end user devices which is essential for 6G. In this paper our focus is to explore and propose an ultimate optical wireless transport network architecture scheme that will cater for loT as well as networks beyond 5G. We thus propose an innovative Optical-Backhaul and Wireless Access (OBWA) network architecture as a favorable solution for future networks. We further present a joint channel and route allocation (JCRA) scheme for achieving optimal quality of experience. Performance evaluation of the proposed JCRA scheme for OBW A network architecture show a significant improvement in the network throughput as well as the network end-to-end delay despite varying load traffic or varying flow channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Data
Big Data COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍: Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions. Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government. Big Data coverage includes: Big data industry standards, New technologies being developed specifically for big data, Data acquisition, cleaning, distribution, and best practices, Data protection, privacy, and policy, Business interests from research to product, The changing role of business intelligence, Visualization and design principles of big data infrastructures, Physical interfaces and robotics, Social networking advantages for Facebook, Twitter, Amazon, Google, etc, Opportunities around big data and how companies can harness it to their advantage.
期刊最新文献
DMHANT: DropMessage Hypergraph Attention Network for Information Propagation Prediction. Maximizing Influence in Social Networks Using Combined Local Features and Deep Learning-Based Node Embedding. A Weighted GraphSAGE-Based Context-Aware Approach for Big Data Access Control. Attribute-Based Adaptive Homomorphic Encryption for Big Data Security. Hybrid Deep Learning Approach for Traffic Speed Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1