生物活性的概念及其在生物现象中的应用

J. Otsuka
{"title":"生物活性的概念及其在生物现象中的应用","authors":"J. Otsuka","doi":"10.4172/2161-0398.1000235","DOIUrl":null,"url":null,"abstract":"Although the life has been a mystery for most physicists since the problem of Maxwell's demon, this mystery is resolved by considering the following characteristics of an organism; the self-reproduction by taking material and energy sources from the outside on the basis of its genetic information, and the selection of self-reproduced organisms to maintain and further improve the genetic information. According to the knowledge of molecular biology revealed recently, the molecular route to accomplish the self-reproduction is evaluated energetically, and a new thermodynamic quantity of biological activity is proposed for characterizing the state of an organism in terms of acquired energy, stored energy and systematization. This quantity is not only compatible with the law of thermodynamics but also reflects the changes in genome and in the mode of gene expression. Thus, the biological activity becomes a useful measure for analyzing various biological phenomena quantitatively. This is illustrated for the large-scale evolution by generating new genes from gene duplication and for the estimation of the energy required for the development of a multicellular organism. The origin of life is also discussed from the aspect of biological activity and the extended view of evolution.","PeriodicalId":94103,"journal":{"name":"Journal of physical chemistry & biophysics","volume":"1 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Concept of Biological Activity and Its Application to Biological Phenomena\",\"authors\":\"J. Otsuka\",\"doi\":\"10.4172/2161-0398.1000235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the life has been a mystery for most physicists since the problem of Maxwell's demon, this mystery is resolved by considering the following characteristics of an organism; the self-reproduction by taking material and energy sources from the outside on the basis of its genetic information, and the selection of self-reproduced organisms to maintain and further improve the genetic information. According to the knowledge of molecular biology revealed recently, the molecular route to accomplish the self-reproduction is evaluated energetically, and a new thermodynamic quantity of biological activity is proposed for characterizing the state of an organism in terms of acquired energy, stored energy and systematization. This quantity is not only compatible with the law of thermodynamics but also reflects the changes in genome and in the mode of gene expression. Thus, the biological activity becomes a useful measure for analyzing various biological phenomena quantitatively. This is illustrated for the large-scale evolution by generating new genes from gene duplication and for the estimation of the energy required for the development of a multicellular organism. The origin of life is also discussed from the aspect of biological activity and the extended view of evolution.\",\"PeriodicalId\":94103,\"journal\":{\"name\":\"Journal of physical chemistry & biophysics\",\"volume\":\"1 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of physical chemistry & biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2161-0398.1000235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physical chemistry & biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2161-0398.1000235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管自麦克斯韦妖问题以来,生命对大多数物理学家来说一直是个谜,但考虑到生物体的以下特征,这个谜就解开了;在自身遗传信息的基础上,通过从外界获取物质和能量来源进行自我繁殖,并选择自我繁殖的生物体来维持和进一步完善遗传信息。根据近年来分子生物学的最新知识,从能量上评价了完成自我繁殖的分子途径,并提出了一种新的生物活性热力学量,从获得能量、储存能量和系统化的角度来表征生物体的状态。这一数量不仅符合热力学规律,而且反映了基因组和基因表达方式的变化。因此,生物活性成为定量分析各种生物现象的有用指标。这是通过基因复制产生新基因的大规模进化和多细胞生物发育所需能量的估计所说明的。并从生物活性的角度和扩展的进化论观点探讨了生命的起源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Concept of Biological Activity and Its Application to Biological Phenomena
Although the life has been a mystery for most physicists since the problem of Maxwell's demon, this mystery is resolved by considering the following characteristics of an organism; the self-reproduction by taking material and energy sources from the outside on the basis of its genetic information, and the selection of self-reproduced organisms to maintain and further improve the genetic information. According to the knowledge of molecular biology revealed recently, the molecular route to accomplish the self-reproduction is evaluated energetically, and a new thermodynamic quantity of biological activity is proposed for characterizing the state of an organism in terms of acquired energy, stored energy and systematization. This quantity is not only compatible with the law of thermodynamics but also reflects the changes in genome and in the mode of gene expression. Thus, the biological activity becomes a useful measure for analyzing various biological phenomena quantitatively. This is illustrated for the large-scale evolution by generating new genes from gene duplication and for the estimation of the energy required for the development of a multicellular organism. The origin of life is also discussed from the aspect of biological activity and the extended view of evolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Antioxidant and its Adverse Effects Biomaterials in the Field of Dental Implantation Radioactivity: Radon Gas, its Properties and the Risks of Increasing its Concentration Using Demarcation Criteria as a Tool for Evaluating Controversial Case of andldquo;Water Memoryandrdquo; The Practice of Preoperative Antibiotic Prophylaxis and the Adherence to ASHP Guideline in Different Hospitals in Riyadh
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1