基于参数估计和多通道融合的平均erp分类

L. Gupta, J. Phegley, D. Molfese
{"title":"基于参数估计和多通道融合的平均erp分类","authors":"L. Gupta, J. Phegley, D. Molfese","doi":"10.1109/IEMBS.2002.1134437","DOIUrl":null,"url":null,"abstract":"A parameter estimation and classification fusion approach is developed to classify averaged event-related potentials (ERPs) recorded from multiple channels. It is shown that the parameters of the averaged ERP ensemble can be estimated directly from the parameters of the single-trial ensemble. The parameter estimation methods are applied to independently design a Gaussian likelihood ratio classifier for each channel. A fusion rule is formulated to classify an ERP using the classification results from all the channels. Very importantly, it is shown that parametric classifiers can be designed and evaluated without having to collect a prohibitively large number of single-trial ERPs. It is also shown that the performance of a majority rule fusion classifier is consistently superior to the rule that selects a single best channel.","PeriodicalId":60385,"journal":{"name":"中国地球物理学会年刊","volume":"60 1","pages":"163-164 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter estimation and multichannel fusion for classifying averaged ERPs\",\"authors\":\"L. Gupta, J. Phegley, D. Molfese\",\"doi\":\"10.1109/IEMBS.2002.1134437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A parameter estimation and classification fusion approach is developed to classify averaged event-related potentials (ERPs) recorded from multiple channels. It is shown that the parameters of the averaged ERP ensemble can be estimated directly from the parameters of the single-trial ensemble. The parameter estimation methods are applied to independently design a Gaussian likelihood ratio classifier for each channel. A fusion rule is formulated to classify an ERP using the classification results from all the channels. Very importantly, it is shown that parametric classifiers can be designed and evaluated without having to collect a prohibitively large number of single-trial ERPs. It is also shown that the performance of a majority rule fusion classifier is consistently superior to the rule that selects a single best channel.\",\"PeriodicalId\":60385,\"journal\":{\"name\":\"中国地球物理学会年刊\",\"volume\":\"60 1\",\"pages\":\"163-164 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国地球物理学会年刊\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.2002.1134437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国地球物理学会年刊","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/IEMBS.2002.1134437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种参数估计和分类融合方法,对多通道记录的平均事件相关电位进行分类。结果表明,平均ERP集合的参数可以直接由单次试验集合的参数估计出来。采用参数估计方法为每个通道独立设计高斯似然比分类器。建立了一个融合规则,利用所有通道的分类结果对ERP进行分类。非常重要的是,它表明参数分类器可以设计和评估,而不必收集大量的单次试验erp。研究还表明,多数规则融合分类器的性能始终优于选择单个最佳信道的规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameter estimation and multichannel fusion for classifying averaged ERPs
A parameter estimation and classification fusion approach is developed to classify averaged event-related potentials (ERPs) recorded from multiple channels. It is shown that the parameters of the averaged ERP ensemble can be estimated directly from the parameters of the single-trial ensemble. The parameter estimation methods are applied to independently design a Gaussian likelihood ratio classifier for each channel. A fusion rule is formulated to classify an ERP using the classification results from all the channels. Very importantly, it is shown that parametric classifiers can be designed and evaluated without having to collect a prohibitively large number of single-trial ERPs. It is also shown that the performance of a majority rule fusion classifier is consistently superior to the rule that selects a single best channel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
368
期刊最新文献
Contour extraction of fetus' head from echocardiogram using Snakes Towards portable flow cytometry: study on the use of air-sheath-based volume-efficient two-phase microfluidic systems Left ventricular volume changes after defibrillation Bifocal technique for accurate measurement of total attenuation coefficient in scattering media with OCT Comparative in vivo and ex vivo pacing and sensing performance study using isolated four-chamber working swine heart model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1