Soon-Jae Kweon, Sung-Hun Jo, Ji-Hoon Suh, M. Je, Hyung-Joun Yoo
{"title":"一种用于电生物阻抗谱的恒增益有限脉冲响应(FIR)滤波器正弦信号发生器","authors":"Soon-Jae Kweon, Sung-Hun Jo, Ji-Hoon Suh, M. Je, Hyung-Joun Yoo","doi":"10.1109/ISCAS.2018.8351219","DOIUrl":null,"url":null,"abstract":"We propose a sinusoidal signal generator (SSG) using a constant gain finite impulse response (FIR) filter for measuring impedance spectrum from 1-kHz to 2.048-MHz range. A simple digital-to-analog converter (DAC) using eight unit resistors generates differential stepwise signals and the FIR filter attenuates close-in harmonics of the stepwise signals using its inherent nulls. A continuous-time (CT) low-pass filter (LPF) attenuates high-order harmonics of the FIR filter's output. The fabricated SSG achieved the total harmonic distortion less than 0.2% up to 10th harmonic using a simple DAC and low oversampling ratio of 8. Since our SSG adopts a passive type of CT LPF and a constant gain FIR filter which does not require any gain compensation circuit, the fabricated SSG consumed 5.1 mW which is about 30% of our previous SSG.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"30 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Sinusoidal Signal Generator Using a Constant Gain Finite Impulse Response (FIR) Filter for Electrical Bioimpedance Spectroscopy\",\"authors\":\"Soon-Jae Kweon, Sung-Hun Jo, Ji-Hoon Suh, M. Je, Hyung-Joun Yoo\",\"doi\":\"10.1109/ISCAS.2018.8351219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a sinusoidal signal generator (SSG) using a constant gain finite impulse response (FIR) filter for measuring impedance spectrum from 1-kHz to 2.048-MHz range. A simple digital-to-analog converter (DAC) using eight unit resistors generates differential stepwise signals and the FIR filter attenuates close-in harmonics of the stepwise signals using its inherent nulls. A continuous-time (CT) low-pass filter (LPF) attenuates high-order harmonics of the FIR filter's output. The fabricated SSG achieved the total harmonic distortion less than 0.2% up to 10th harmonic using a simple DAC and low oversampling ratio of 8. Since our SSG adopts a passive type of CT LPF and a constant gain FIR filter which does not require any gain compensation circuit, the fabricated SSG consumed 5.1 mW which is about 30% of our previous SSG.\",\"PeriodicalId\":6569,\"journal\":{\"name\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"30 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2018.8351219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Sinusoidal Signal Generator Using a Constant Gain Finite Impulse Response (FIR) Filter for Electrical Bioimpedance Spectroscopy
We propose a sinusoidal signal generator (SSG) using a constant gain finite impulse response (FIR) filter for measuring impedance spectrum from 1-kHz to 2.048-MHz range. A simple digital-to-analog converter (DAC) using eight unit resistors generates differential stepwise signals and the FIR filter attenuates close-in harmonics of the stepwise signals using its inherent nulls. A continuous-time (CT) low-pass filter (LPF) attenuates high-order harmonics of the FIR filter's output. The fabricated SSG achieved the total harmonic distortion less than 0.2% up to 10th harmonic using a simple DAC and low oversampling ratio of 8. Since our SSG adopts a passive type of CT LPF and a constant gain FIR filter which does not require any gain compensation circuit, the fabricated SSG consumed 5.1 mW which is about 30% of our previous SSG.