板栗生产中农业工业废弃物的资源化利用

Q3 Chemical Engineering Chemical engineering transactions Pub Date : 2021-07-01 DOI:10.3303/CET2187075
D. Amato, G. Squillaci, P. Giudicianni, A. Morana, R. Ragucci, F. Cara
{"title":"板栗生产中农业工业废弃物的资源化利用","authors":"D. Amato, G. Squillaci, P. Giudicianni, A. Morana, R. Ragucci, F. Cara","doi":"10.3303/CET2187075","DOIUrl":null,"url":null,"abstract":"In recent years, the consumption of fruits of European chestnut has considerably enhanced due to their positive health effects. However, the chestnut peeling process generates solid residues (inner and outer shells), which account for about 10–15% of the whole chestnut weight. In the present study, an integration between a chemical and a thermochemical process is proposed as a valorization route for the chestnut residues: the extraction of polyphenols, a class of strong natural antioxidants, and the slow pyrolysis for biochar production. The chestnut residues after the polyphenols extraction are used as pyrolysis feedstock, and the produced biochars are applied as adsorbing materials to simplify the recovery of the extracted polyphenols.The aim of this study is to evaluate how the physical and chemical characteristics of biochar from chestnut residues influence the adsorption of polyphenols. The biochar production was carried out in a slow pyrolysis reactor using two feedstocks (as received and post-extraction chestnut residues) and three pyrolysis temperatures (500 °C, 600 °C and 700 °C), thus resulting in six different biochars. Each biochar was used as an adsorbent material for the polyphenols in the aqueous extracting solution obtained from chestnut residues. Specific classes of polyphenols were considered, such as non-tannin polyphenols, hydrolysable tannins and condensed tannins. The adsorption efficiency of biochar increases in the char produced at 700 °C for both the considered feedstocks. The analysis of the specific polyphenols groups shows that, despite having an overall adsorption capacity much lower than activated carbon, biochars have a great selectivity for the adsorption of non-tannin polyphenols.","PeriodicalId":9695,"journal":{"name":"Chemical engineering transactions","volume":"24 1","pages":"445-450"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Valorization of Agroindustrial Waste from Chestnut Production\",\"authors\":\"D. Amato, G. Squillaci, P. Giudicianni, A. Morana, R. Ragucci, F. Cara\",\"doi\":\"10.3303/CET2187075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the consumption of fruits of European chestnut has considerably enhanced due to their positive health effects. However, the chestnut peeling process generates solid residues (inner and outer shells), which account for about 10–15% of the whole chestnut weight. In the present study, an integration between a chemical and a thermochemical process is proposed as a valorization route for the chestnut residues: the extraction of polyphenols, a class of strong natural antioxidants, and the slow pyrolysis for biochar production. The chestnut residues after the polyphenols extraction are used as pyrolysis feedstock, and the produced biochars are applied as adsorbing materials to simplify the recovery of the extracted polyphenols.The aim of this study is to evaluate how the physical and chemical characteristics of biochar from chestnut residues influence the adsorption of polyphenols. The biochar production was carried out in a slow pyrolysis reactor using two feedstocks (as received and post-extraction chestnut residues) and three pyrolysis temperatures (500 °C, 600 °C and 700 °C), thus resulting in six different biochars. Each biochar was used as an adsorbent material for the polyphenols in the aqueous extracting solution obtained from chestnut residues. Specific classes of polyphenols were considered, such as non-tannin polyphenols, hydrolysable tannins and condensed tannins. The adsorption efficiency of biochar increases in the char produced at 700 °C for both the considered feedstocks. The analysis of the specific polyphenols groups shows that, despite having an overall adsorption capacity much lower than activated carbon, biochars have a great selectivity for the adsorption of non-tannin polyphenols.\",\"PeriodicalId\":9695,\"journal\":{\"name\":\"Chemical engineering transactions\",\"volume\":\"24 1\",\"pages\":\"445-450\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical engineering transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3303/CET2187075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical engineering transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3303/CET2187075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 1

摘要

近年来,由于其积极的健康作用,欧洲板栗果实的消费量大大增加。然而,板栗剥皮过程中会产生固体残留物(内壳和外壳),约占整个板栗重量的10-15%。在本研究中,提出了一种化学和热化学相结合的方法作为栗子渣的增值途径:提取多酚,一类强天然抗氧化剂,并缓慢热解生产生物炭。将提取多酚后的板栗渣作为热解原料,制备的生物炭作为吸附材料,简化提取的多酚的回收。本研究的目的是评价板栗渣生物炭的物理和化学特性对多酚吸附的影响。生物炭的生产在慢速热解反应器中进行,使用两种原料(接收和提取后的栗子渣)和三种热解温度(500°C, 600°C和700°C),从而得到六种不同的生物炭。每一种生物炭都被用作板栗渣水提液中多酚的吸附材料。考虑了特定种类的多酚,如非单宁多酚、可水解单宁和缩合单宁。对于这两种原料,在700℃下生产的炭,生物炭的吸附效率都有所提高。对特定多酚基团的分析表明,尽管生物炭的总体吸附量远低于活性炭,但对非单宁多酚的吸附具有很大的选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Valorization of Agroindustrial Waste from Chestnut Production
In recent years, the consumption of fruits of European chestnut has considerably enhanced due to their positive health effects. However, the chestnut peeling process generates solid residues (inner and outer shells), which account for about 10–15% of the whole chestnut weight. In the present study, an integration between a chemical and a thermochemical process is proposed as a valorization route for the chestnut residues: the extraction of polyphenols, a class of strong natural antioxidants, and the slow pyrolysis for biochar production. The chestnut residues after the polyphenols extraction are used as pyrolysis feedstock, and the produced biochars are applied as adsorbing materials to simplify the recovery of the extracted polyphenols.The aim of this study is to evaluate how the physical and chemical characteristics of biochar from chestnut residues influence the adsorption of polyphenols. The biochar production was carried out in a slow pyrolysis reactor using two feedstocks (as received and post-extraction chestnut residues) and three pyrolysis temperatures (500 °C, 600 °C and 700 °C), thus resulting in six different biochars. Each biochar was used as an adsorbent material for the polyphenols in the aqueous extracting solution obtained from chestnut residues. Specific classes of polyphenols were considered, such as non-tannin polyphenols, hydrolysable tannins and condensed tannins. The adsorption efficiency of biochar increases in the char produced at 700 °C for both the considered feedstocks. The analysis of the specific polyphenols groups shows that, despite having an overall adsorption capacity much lower than activated carbon, biochars have a great selectivity for the adsorption of non-tannin polyphenols.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical engineering transactions
Chemical engineering transactions Chemical Engineering-Chemical Engineering (all)
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
6 weeks
期刊介绍: Chemical Engineering Transactions (CET) aims to be a leading international journal for publication of original research and review articles in chemical, process, and environmental engineering. CET begin in 2002 as a vehicle for publication of high-quality papers in chemical engineering, connected with leading international conferences. In 2014, CET opened a new era as an internationally-recognised journal. Articles containing original research results, covering any aspect from molecular phenomena through to industrial case studies and design, with a strong influence of chemical engineering methodologies and ethos are particularly welcome. We encourage state-of-the-art contributions relating to the future of industrial processing, sustainable design, as well as transdisciplinary research that goes beyond the conventional bounds of chemical engineering. Short reviews on hot topics, emerging technologies, and other areas of high interest should highlight unsolved challenges and provide clear directions for future research. The journal publishes periodically with approximately 6 volumes per year. Core topic areas: -Batch processing- Biotechnology- Circular economy and integration- Environmental engineering- Fluid flow and fluid mechanics- Green materials and processing- Heat and mass transfer- Innovation engineering- Life cycle analysis and optimisation- Modelling and simulation- Operations and supply chain management- Particle technology- Process dynamics, flexibility, and control- Process integration and design- Process intensification and optimisation- Process safety- Product development- Reaction engineering- Renewable energy- Separation processes- Smart industry, city, and agriculture- Sustainability- Systems engineering- Thermodynamic- Waste minimisation, processing and management- Water and wastewater engineering
期刊最新文献
Incorporation of a Filter Media by Cellulose Fibers in Biosafety from Sugarcane Bagasse by Alkaline Hydrolysis Air Deterioration Gases in the Social Confinement Period by COVID-19 in Bogotá, Quito, Lima, Santiago de Chile and Buenos Aires Modelling of Methanol Synthesis The Potential of Liquefied Oxygen Storage for Flexible Oxygen-Pressure Swing Adsorption Unit Optimal Operational Profiles in an Electrodialysis Unit for Ion Recovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1