基于三维卷积神经网络的高光谱图像特征提取与分类

Xuefeng Liu, Qiaoqiao Sun, Y. Meng, Congcong Wang, Min Fu
{"title":"基于三维卷积神经网络的高光谱图像特征提取与分类","authors":"Xuefeng Liu, Qiaoqiao Sun, Y. Meng, Congcong Wang, Min Fu","doi":"10.1109/DDCLS.2018.8515930","DOIUrl":null,"url":null,"abstract":"Deep learning has huge potential for hyperspectral image (HSI) classification. In order to fully exploit the information in HSI and improve the classification accuracy, a new classification method based on 3D-convolutional neural network (3D-CNN) is proposed. In the meantime, virtual samples are introduced to solve the problem of insufficient samples of HSI. The experimental results show that the proposed method has a good application prospect in HSI classification.","PeriodicalId":6565,"journal":{"name":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"1 1","pages":"918-922"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Feature Extraction and Classification of Hyperspectral Image Based on 3D- Convolution Neural Network\",\"authors\":\"Xuefeng Liu, Qiaoqiao Sun, Y. Meng, Congcong Wang, Min Fu\",\"doi\":\"10.1109/DDCLS.2018.8515930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning has huge potential for hyperspectral image (HSI) classification. In order to fully exploit the information in HSI and improve the classification accuracy, a new classification method based on 3D-convolutional neural network (3D-CNN) is proposed. In the meantime, virtual samples are introduced to solve the problem of insufficient samples of HSI. The experimental results show that the proposed method has a good application prospect in HSI classification.\",\"PeriodicalId\":6565,\"journal\":{\"name\":\"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"1 1\",\"pages\":\"918-922\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS.2018.8515930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2018.8515930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

深度学习在高光谱图像(HSI)分类方面具有巨大的潜力。为了充分利用HSI中的信息,提高分类精度,提出了一种新的基于3d -卷积神经网络(3D-CNN)的分类方法。同时,为了解决HSI样本不足的问题,引入了虚拟样本。实验结果表明,该方法在HSI分类中具有良好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature Extraction and Classification of Hyperspectral Image Based on 3D- Convolution Neural Network
Deep learning has huge potential for hyperspectral image (HSI) classification. In order to fully exploit the information in HSI and improve the classification accuracy, a new classification method based on 3D-convolutional neural network (3D-CNN) is proposed. In the meantime, virtual samples are introduced to solve the problem of insufficient samples of HSI. The experimental results show that the proposed method has a good application prospect in HSI classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Diagnosis of High-speed Train Bogie Based on Spectrogram and Multi-channel Voting Yarn-dyed Fabric Defect Detection with YOLOV2 Based on Deep Convolution Neural Networks On the Design and Analysis of a Learning Control Algorithm for Point-to-point Tracking Tasks Iterative Learning Control for Singular System with An Arbitrary Initial State A Comparative Study of Adaptive Soft Sensors for Quality Prediction in an Industrial Refining Hydrocracking Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1