{"title":"呼吸神经控制的计算模型","authors":"Y. Molkov, J. Rubin, I. Rybak, Jeffrey C. Smith","doi":"10.1002/wsbm.1371","DOIUrl":null,"url":null,"abstract":"The ongoing process of breathing underlies the gas exchange essential for mammalian life. Each respiratory cycle ensues from the activity of rhythmic neural circuits in the brainstem, shaped by various modulatory signals, including mechanoreceptor feedback sensitive to lung inflation and chemoreceptor feedback dependent on gas composition in blood and tissues. This paper reviews a variety of computational models designed to reproduce experimental findings related to the neural control of breathing and generate predictions for future experimental testing. The review starts from the description of the core respiratory network in the brainstem, representing the central pattern generator (CPG) responsible for producing rhythmic respiratory activity, and progresses to encompass additional complexities needed to simulate different metabolic challenges, closed‐loop feedback control including the lungs, and interactions between the respiratory and autonomic nervous systems. The integrated models considered in this review share a common framework including a distributed CPG core network responsible for generating the baseline three‐phase pattern of rhythmic neural activity underlying normal breathing. WIREs Syst Biol Med 2017, 9:e1371. doi: 10.1002/wsbm.1371","PeriodicalId":49254,"journal":{"name":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","volume":"22 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Computational models of the neural control of breathing\",\"authors\":\"Y. Molkov, J. Rubin, I. Rybak, Jeffrey C. Smith\",\"doi\":\"10.1002/wsbm.1371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ongoing process of breathing underlies the gas exchange essential for mammalian life. Each respiratory cycle ensues from the activity of rhythmic neural circuits in the brainstem, shaped by various modulatory signals, including mechanoreceptor feedback sensitive to lung inflation and chemoreceptor feedback dependent on gas composition in blood and tissues. This paper reviews a variety of computational models designed to reproduce experimental findings related to the neural control of breathing and generate predictions for future experimental testing. The review starts from the description of the core respiratory network in the brainstem, representing the central pattern generator (CPG) responsible for producing rhythmic respiratory activity, and progresses to encompass additional complexities needed to simulate different metabolic challenges, closed‐loop feedback control including the lungs, and interactions between the respiratory and autonomic nervous systems. The integrated models considered in this review share a common framework including a distributed CPG core network responsible for generating the baseline three‐phase pattern of rhythmic neural activity underlying normal breathing. WIREs Syst Biol Med 2017, 9:e1371. doi: 10.1002/wsbm.1371\",\"PeriodicalId\":49254,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Systems Biology and Medicine\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Systems Biology and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wsbm.1371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wsbm.1371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Computational models of the neural control of breathing
The ongoing process of breathing underlies the gas exchange essential for mammalian life. Each respiratory cycle ensues from the activity of rhythmic neural circuits in the brainstem, shaped by various modulatory signals, including mechanoreceptor feedback sensitive to lung inflation and chemoreceptor feedback dependent on gas composition in blood and tissues. This paper reviews a variety of computational models designed to reproduce experimental findings related to the neural control of breathing and generate predictions for future experimental testing. The review starts from the description of the core respiratory network in the brainstem, representing the central pattern generator (CPG) responsible for producing rhythmic respiratory activity, and progresses to encompass additional complexities needed to simulate different metabolic challenges, closed‐loop feedback control including the lungs, and interactions between the respiratory and autonomic nervous systems. The integrated models considered in this review share a common framework including a distributed CPG core network responsible for generating the baseline three‐phase pattern of rhythmic neural activity underlying normal breathing. WIREs Syst Biol Med 2017, 9:e1371. doi: 10.1002/wsbm.1371
期刊介绍:
Journal Name:Wiley Interdisciplinary Reviews-Systems Biology and Medicine
Focus:
Strong interdisciplinary focus
Serves as an encyclopedic reference for systems biology research
Conceptual Framework:
Systems biology asserts the study of organisms as hierarchical systems or networks
Individual biological components interact in complex ways within these systems
Article Coverage:
Discusses biology, methods, and models
Spans systems from a few molecules to whole species
Topical Coverage:
Developmental Biology
Physiology
Biological Mechanisms
Models of Systems, Properties, and Processes
Laboratory Methods and Technologies
Translational, Genomic, and Systems Medicine