基于深度神经网络的信息物理生产系统状态监测系统的对抗示例生成以防止误分类

Felix Specht, J. Otto, O. Niggemann, B. Hammer
{"title":"基于深度神经网络的信息物理生产系统状态监测系统的对抗示例生成以防止误分类","authors":"Felix Specht, J. Otto, O. Niggemann, B. Hammer","doi":"10.1109/INDIN.2018.8472060","DOIUrl":null,"url":null,"abstract":"Deep neural network based condition monitoring systems are used to detect system failures of cyber-physical production systems. However, a vulnerability of deep neural networks are adversarial examples. They are manipulated inputs, e.g. process data, with the ability to mislead a deep neural network into misclassification. Adversarial example attacks can manipulate the physical production process of a cyber-physical production system without being recognized by the condition monitoring system. Manipulation of the physical process poses a serious threat for production systems and employees. This paper introduces CyberProtect, a novel approach to prevent misclassification caused by adversarial example attacks. CyberProtect generates adversarial examples and uses them to retrain deep neural networks. This results in a hardened deep neural network with a significant reduced misclassification rate. The proposed countermeasure increases the classification rate from 20% to 82%, as proved by empirical results.","PeriodicalId":6467,"journal":{"name":"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)","volume":"16 1","pages":"760-765"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Generation of Adversarial Examples to Prevent Misclassification of Deep Neural Network based Condition Monitoring Systems for Cyber-Physical Production Systems\",\"authors\":\"Felix Specht, J. Otto, O. Niggemann, B. Hammer\",\"doi\":\"10.1109/INDIN.2018.8472060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural network based condition monitoring systems are used to detect system failures of cyber-physical production systems. However, a vulnerability of deep neural networks are adversarial examples. They are manipulated inputs, e.g. process data, with the ability to mislead a deep neural network into misclassification. Adversarial example attacks can manipulate the physical production process of a cyber-physical production system without being recognized by the condition monitoring system. Manipulation of the physical process poses a serious threat for production systems and employees. This paper introduces CyberProtect, a novel approach to prevent misclassification caused by adversarial example attacks. CyberProtect generates adversarial examples and uses them to retrain deep neural networks. This results in a hardened deep neural network with a significant reduced misclassification rate. The proposed countermeasure increases the classification rate from 20% to 82%, as proved by empirical results.\",\"PeriodicalId\":6467,\"journal\":{\"name\":\"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"16 1\",\"pages\":\"760-765\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2018.8472060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2018.8472060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

基于深度神经网络的状态监测系统用于网络物理生产系统的故障检测。然而,深度神经网络的脆弱性是对抗性的例子。它们是被操纵的输入,例如过程数据,具有误导深度神经网络进行错误分类的能力。对抗性示例攻击可以在不被状态监测系统识别的情况下操纵网络物理生产系统的物理生产过程。对物理过程的操纵对生产系统和员工构成严重威胁。本文介绍了一种防止由对抗性示例攻击引起的误分类的新方法——CyberProtect。CyberProtect生成对抗性示例,并用它们来重新训练深度神经网络。这导致了一个强化的深度神经网络,显著降低了误分类率。实证结果表明,该对策将分类率从20%提高到82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generation of Adversarial Examples to Prevent Misclassification of Deep Neural Network based Condition Monitoring Systems for Cyber-Physical Production Systems
Deep neural network based condition monitoring systems are used to detect system failures of cyber-physical production systems. However, a vulnerability of deep neural networks are adversarial examples. They are manipulated inputs, e.g. process data, with the ability to mislead a deep neural network into misclassification. Adversarial example attacks can manipulate the physical production process of a cyber-physical production system without being recognized by the condition monitoring system. Manipulation of the physical process poses a serious threat for production systems and employees. This paper introduces CyberProtect, a novel approach to prevent misclassification caused by adversarial example attacks. CyberProtect generates adversarial examples and uses them to retrain deep neural networks. This results in a hardened deep neural network with a significant reduced misclassification rate. The proposed countermeasure increases the classification rate from 20% to 82%, as proved by empirical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPT - A decision-model-based Approach for Modeling Collaborative Assembly and Manufacturing Tasks Grey-box Model Identification and Fault Detection of Wind Turbines Using Artificial Neural Networks An Algorithmic Method for Tampering-Proof and Privacy-Preserving Smart Metering Digital Transformation as the Subject of Discursive Analysis Condition monitoring of wind-power units using the Derivative-free nonlinear Kalman Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1