{"title":"数字化微流控的民主化","authors":"C. Kim","doi":"10.1109/Transducers50396.2021.9495383","DOIUrl":null,"url":null,"abstract":"As a subset of microfluidics, digital microfluidics handles fluids as small discrete entities (e.g., droplets) by actuating them individually. The choice of actuation mechanism to handle droplets has been electrowetting, especially in the form of electrowetting-on-dielectric (EWOD) developed in early 2000s. Because of its elegantly simple platform (no channel, pump or valve needed), EWOD digital microfluidics has been attracting high research interest and led to a series of commercial products in recent years. However, the number of labs utilizing digital microfluidics is still relatively small due to the difficulties fabricating and operating EWOD devices. To open the bottlenecks, we have been striving to establish a cloud-based ecosystem, where digital microfluidics would be accessible to a wide range of end users regardless of their background. The goal is to allow the end users (researchers, entrepreneurs, students, and hobbyists alike) to focus on their own ideas and applications without worrying about the engineering side of the technology. Presented will be the approach, progress, and the status and direction of the endeavor as well as the future outlook.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"160 1","pages":"4-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Democratizing Digital Microfluidics\",\"authors\":\"C. Kim\",\"doi\":\"10.1109/Transducers50396.2021.9495383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a subset of microfluidics, digital microfluidics handles fluids as small discrete entities (e.g., droplets) by actuating them individually. The choice of actuation mechanism to handle droplets has been electrowetting, especially in the form of electrowetting-on-dielectric (EWOD) developed in early 2000s. Because of its elegantly simple platform (no channel, pump or valve needed), EWOD digital microfluidics has been attracting high research interest and led to a series of commercial products in recent years. However, the number of labs utilizing digital microfluidics is still relatively small due to the difficulties fabricating and operating EWOD devices. To open the bottlenecks, we have been striving to establish a cloud-based ecosystem, where digital microfluidics would be accessible to a wide range of end users regardless of their background. The goal is to allow the end users (researchers, entrepreneurs, students, and hobbyists alike) to focus on their own ideas and applications without worrying about the engineering side of the technology. Presented will be the approach, progress, and the status and direction of the endeavor as well as the future outlook.\",\"PeriodicalId\":6814,\"journal\":{\"name\":\"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)\",\"volume\":\"160 1\",\"pages\":\"4-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Transducers50396.2021.9495383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Transducers50396.2021.9495383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
As a subset of microfluidics, digital microfluidics handles fluids as small discrete entities (e.g., droplets) by actuating them individually. The choice of actuation mechanism to handle droplets has been electrowetting, especially in the form of electrowetting-on-dielectric (EWOD) developed in early 2000s. Because of its elegantly simple platform (no channel, pump or valve needed), EWOD digital microfluidics has been attracting high research interest and led to a series of commercial products in recent years. However, the number of labs utilizing digital microfluidics is still relatively small due to the difficulties fabricating and operating EWOD devices. To open the bottlenecks, we have been striving to establish a cloud-based ecosystem, where digital microfluidics would be accessible to a wide range of end users regardless of their background. The goal is to allow the end users (researchers, entrepreneurs, students, and hobbyists alike) to focus on their own ideas and applications without worrying about the engineering side of the technology. Presented will be the approach, progress, and the status and direction of the endeavor as well as the future outlook.