{"title":"数字化微流控的民主化","authors":"C. Kim","doi":"10.1109/Transducers50396.2021.9495383","DOIUrl":null,"url":null,"abstract":"As a subset of microfluidics, digital microfluidics handles fluids as small discrete entities (e.g., droplets) by actuating them individually. The choice of actuation mechanism to handle droplets has been electrowetting, especially in the form of electrowetting-on-dielectric (EWOD) developed in early 2000s. Because of its elegantly simple platform (no channel, pump or valve needed), EWOD digital microfluidics has been attracting high research interest and led to a series of commercial products in recent years. However, the number of labs utilizing digital microfluidics is still relatively small due to the difficulties fabricating and operating EWOD devices. To open the bottlenecks, we have been striving to establish a cloud-based ecosystem, where digital microfluidics would be accessible to a wide range of end users regardless of their background. The goal is to allow the end users (researchers, entrepreneurs, students, and hobbyists alike) to focus on their own ideas and applications without worrying about the engineering side of the technology. Presented will be the approach, progress, and the status and direction of the endeavor as well as the future outlook.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"160 1","pages":"4-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Democratizing Digital Microfluidics\",\"authors\":\"C. Kim\",\"doi\":\"10.1109/Transducers50396.2021.9495383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a subset of microfluidics, digital microfluidics handles fluids as small discrete entities (e.g., droplets) by actuating them individually. The choice of actuation mechanism to handle droplets has been electrowetting, especially in the form of electrowetting-on-dielectric (EWOD) developed in early 2000s. Because of its elegantly simple platform (no channel, pump or valve needed), EWOD digital microfluidics has been attracting high research interest and led to a series of commercial products in recent years. However, the number of labs utilizing digital microfluidics is still relatively small due to the difficulties fabricating and operating EWOD devices. To open the bottlenecks, we have been striving to establish a cloud-based ecosystem, where digital microfluidics would be accessible to a wide range of end users regardless of their background. The goal is to allow the end users (researchers, entrepreneurs, students, and hobbyists alike) to focus on their own ideas and applications without worrying about the engineering side of the technology. Presented will be the approach, progress, and the status and direction of the endeavor as well as the future outlook.\",\"PeriodicalId\":6814,\"journal\":{\"name\":\"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)\",\"volume\":\"160 1\",\"pages\":\"4-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Transducers50396.2021.9495383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Transducers50396.2021.9495383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

作为微流控的一个子集,数字微流控通过单独驱动小的离散实体(如液滴)来处理流体。电润湿(electrowetting-on-dielectric, EWOD)是21世纪初发展起来的一种处理液滴的驱动机制。EWOD数字微流控技术由于其平台简洁美观(不需要通道、泵或阀门),近年来引起了人们的高度关注,并推出了一系列商业产品。然而,由于制造和操作EWOD设备的困难,使用数字微流体的实验室数量仍然相对较少。为了打开瓶颈,我们一直在努力建立一个基于云的生态系统,在这个生态系统中,数字微流体将被广泛的终端用户访问,而不管他们的背景如何。其目标是让最终用户(研究人员、企业家、学生和爱好者)可以专注于自己的想法和应用程序,而不必担心技术的工程方面。本文将介绍这一努力的方法、进展、现状和方向以及未来的展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Democratizing Digital Microfluidics
As a subset of microfluidics, digital microfluidics handles fluids as small discrete entities (e.g., droplets) by actuating them individually. The choice of actuation mechanism to handle droplets has been electrowetting, especially in the form of electrowetting-on-dielectric (EWOD) developed in early 2000s. Because of its elegantly simple platform (no channel, pump or valve needed), EWOD digital microfluidics has been attracting high research interest and led to a series of commercial products in recent years. However, the number of labs utilizing digital microfluidics is still relatively small due to the difficulties fabricating and operating EWOD devices. To open the bottlenecks, we have been striving to establish a cloud-based ecosystem, where digital microfluidics would be accessible to a wide range of end users regardless of their background. The goal is to allow the end users (researchers, entrepreneurs, students, and hobbyists alike) to focus on their own ideas and applications without worrying about the engineering side of the technology. Presented will be the approach, progress, and the status and direction of the endeavor as well as the future outlook.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fabrication and Characterization of 3D Microelectrode Arrays (3D MEAS) with Tri-Modal (Electrical, Optical, and Microfluidic) Interrogation of Electrogenic Cell Constructs Consistency Evaluation on Preparation Methods of Optical Fiber Photoacoustic Probe CO2Gas Sensing By Cmos-Mems Scaln-Based Pyroelectric Detector Based on MID-IR Absorption Prospect of New AFM Probe Design Enabled by Stress Gradient Flexible Film Loudspeaker Based on Piezoelectric PZT/Si Ultra-Thin MEMS Chips
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1