维生素E包封纳米乳液配方、流变学及抗菌分析

V. Prakash, Lipika Parida
{"title":"维生素E包封纳米乳液配方、流变学及抗菌分析","authors":"V. Prakash, Lipika Parida","doi":"10.55522/jmpas.v12i3.5019","DOIUrl":null,"url":null,"abstract":"Vitamin E is an important food ingredient that individuals ingest to help prevent numerous diseases. Nano-emulsions are frequently employed in pharmaceutical, food, and personal care applications as means of delivering a variety of lipophilic active substances, namely vitamins that are oil-soluble. Both high-energy and low-energy methods are used to create nano-emulsions. The latter, however, offers advantages including less cost, convenience of use, and increased energy efficiency. In this work, we used the emulsion phase inversion technique to create nano-emulsions containing vitamin E. We investigated the rheological and physical characteristics of nano-emulsions created at different stirring rates ranging from 30 to 110 minutes. The emulsion phase inversion approach mixes an organic phase made up of oil, vitamin E, and a surfactant with an aqueous phase. The droplet size, zeta potential, and rheology of all the nano-emulsions were measured. The size distribution of nano-emulsions was measured in the particle size examination method utilizing dynamic light scattering and average droplet diameter was observed to be within a range of 141 nm to 177 nm and to follow a sequence: 110 < 70 < 30 min. The lowest droplet size, 141 nm, with a polydispersity index of 0.234, was obtained at 110 minutes. The zeta potential of formulated nano-emulsions ranged from – 7.1 m to – 14.3 mV. The rheological properties of nano-emulsions revealed non-Newtonian flow behavior. The antimicrobial test of nano-emulsions was examined with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and the emulsions were resistant to S. aureus.","PeriodicalId":16445,"journal":{"name":"Journal of Medical pharmaceutical and allied sciences","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vitamin E encapsulated nano-emulsions formulation, rheological and antimicrobial analysis\",\"authors\":\"V. Prakash, Lipika Parida\",\"doi\":\"10.55522/jmpas.v12i3.5019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vitamin E is an important food ingredient that individuals ingest to help prevent numerous diseases. Nano-emulsions are frequently employed in pharmaceutical, food, and personal care applications as means of delivering a variety of lipophilic active substances, namely vitamins that are oil-soluble. Both high-energy and low-energy methods are used to create nano-emulsions. The latter, however, offers advantages including less cost, convenience of use, and increased energy efficiency. In this work, we used the emulsion phase inversion technique to create nano-emulsions containing vitamin E. We investigated the rheological and physical characteristics of nano-emulsions created at different stirring rates ranging from 30 to 110 minutes. The emulsion phase inversion approach mixes an organic phase made up of oil, vitamin E, and a surfactant with an aqueous phase. The droplet size, zeta potential, and rheology of all the nano-emulsions were measured. The size distribution of nano-emulsions was measured in the particle size examination method utilizing dynamic light scattering and average droplet diameter was observed to be within a range of 141 nm to 177 nm and to follow a sequence: 110 < 70 < 30 min. The lowest droplet size, 141 nm, with a polydispersity index of 0.234, was obtained at 110 minutes. The zeta potential of formulated nano-emulsions ranged from – 7.1 m to – 14.3 mV. The rheological properties of nano-emulsions revealed non-Newtonian flow behavior. The antimicrobial test of nano-emulsions was examined with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and the emulsions were resistant to S. aureus.\",\"PeriodicalId\":16445,\"journal\":{\"name\":\"Journal of Medical pharmaceutical and allied sciences\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical pharmaceutical and allied sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55522/jmpas.v12i3.5019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical pharmaceutical and allied sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55522/jmpas.v12i3.5019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

维生素E是一种重要的食物成分,人们摄取它可以帮助预防许多疾病。纳米乳液经常用于制药、食品和个人护理应用,作为输送各种亲脂活性物质的手段,即油溶性维生素。高能和低能两种方法都可用于制造纳米乳液。然而,后者具有成本更低、使用方便和提高能源效率等优点。在这项工作中,我们使用乳液相转化技术制备了含有维生素e的纳米乳液。我们研究了在30至110分钟的不同搅拌速率下制备的纳米乳液的流变学和物理特性。乳液相反转方法将油、维生素E和表面活性剂组成的有机相与水相混合。测定了纳米乳液的粒径、zeta电位和流变性能。采用动态光散射法测定纳米乳剂的粒径分布,观察到纳米乳剂的平均粒径在141 ~ 177 nm之间,大小顺序为:110 < 70 < 30 min,在110 min时得到最小的粒径为141 nm,多分散性指数为0.234。纳米乳液的zeta电位范围为- 7.1 ~ - 14.3 mV。纳米乳液的流变性能表现出非牛顿流动行为。采用大肠杆菌(E. coli)和金黄色葡萄球菌(S. aureus)对纳米乳剂进行抗菌试验,结果表明纳米乳剂对金黄色葡萄球菌具有耐药性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vitamin E encapsulated nano-emulsions formulation, rheological and antimicrobial analysis
Vitamin E is an important food ingredient that individuals ingest to help prevent numerous diseases. Nano-emulsions are frequently employed in pharmaceutical, food, and personal care applications as means of delivering a variety of lipophilic active substances, namely vitamins that are oil-soluble. Both high-energy and low-energy methods are used to create nano-emulsions. The latter, however, offers advantages including less cost, convenience of use, and increased energy efficiency. In this work, we used the emulsion phase inversion technique to create nano-emulsions containing vitamin E. We investigated the rheological and physical characteristics of nano-emulsions created at different stirring rates ranging from 30 to 110 minutes. The emulsion phase inversion approach mixes an organic phase made up of oil, vitamin E, and a surfactant with an aqueous phase. The droplet size, zeta potential, and rheology of all the nano-emulsions were measured. The size distribution of nano-emulsions was measured in the particle size examination method utilizing dynamic light scattering and average droplet diameter was observed to be within a range of 141 nm to 177 nm and to follow a sequence: 110 < 70 < 30 min. The lowest droplet size, 141 nm, with a polydispersity index of 0.234, was obtained at 110 minutes. The zeta potential of formulated nano-emulsions ranged from – 7.1 m to – 14.3 mV. The rheological properties of nano-emulsions revealed non-Newtonian flow behavior. The antimicrobial test of nano-emulsions was examined with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and the emulsions were resistant to S. aureus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Assessing the toxicity and anti-anemia of Beta Vulgaris L.: in silico, phytochemical and antioxidant analysis Formulation of nano spray preparation from Purslane Leaf Extract (Portulaca oleracea l.) as sunscreen In-vitro evaluation of Epherda Foemenia for anti-oxidant and anti-cancer properties Characterization and molecular docking studies of Erucic acid In-silico studies and docking of n-substituted isoindoline-1, 3-dioine analogues as anti-proliferative agents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1