A. Sachenko, V. Kostylyov, V. Vlasiuk, I. Sokolovskyi, M. Evstigneev, T. Slusar, V. V. Chernenko
{"title":"基于c-硅的高效纹理太阳能电池特性建模。复合对空间电荷区的影响","authors":"A. Sachenko, V. Kostylyov, V. Vlasiuk, I. Sokolovskyi, M. Evstigneev, T. Slusar, V. V. Chernenko","doi":"10.15407/spqeo26.01.005","DOIUrl":null,"url":null,"abstract":"Theoretical modeling of the optical and photovoltaic characteristics of highly efficient textured silicon solar cells (SC), including short-circuit current, open-circuit voltage and photoconversion efficiency, has been performed in this work. In the modeling, such recombination mechanisms as non-radiative exciton recombination relative to the Auger mechanism with the participation of a deep recombination level and recombination in the space charge region (SCR) was additionally taken into account. In a simple approximation, the external quantum efficiency of the photocurrent for the indicated SC in the long-wavelength absorption region has been simulated. A theory has been proposed for calculating the thickness dependences of short-circuit current, open-circuit voltage and photoconversion efficiency in them. The calculated dependences are carefully compared with the experimental results obtained for SC with the p+-i-α-Si:H/n-c-Si/i-n+-α-Si:H architecture and the photoconversion efficiency of about 23%. As a result of this comparison, good agreement between the theoretical and calculated dependences has been obtained. It has been ascertained that without taking into account recombination in SCR, a quantitative agreement between the experimental and theoretical light I V characteristics and the dependence of the output power in the SC load on the voltage on it cannot be obtained. The proposed approach and the obtained results can be used to optimize the characteristics of textured SC based on monocrystalline silicon.","PeriodicalId":21598,"journal":{"name":"Semiconductor physics, quantum electronics and optoelectronics","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling of characteristics of highly efficient textured solar cells based on c-silicon. The influence of recombination in the space charge region\",\"authors\":\"A. Sachenko, V. Kostylyov, V. Vlasiuk, I. Sokolovskyi, M. Evstigneev, T. Slusar, V. V. Chernenko\",\"doi\":\"10.15407/spqeo26.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theoretical modeling of the optical and photovoltaic characteristics of highly efficient textured silicon solar cells (SC), including short-circuit current, open-circuit voltage and photoconversion efficiency, has been performed in this work. In the modeling, such recombination mechanisms as non-radiative exciton recombination relative to the Auger mechanism with the participation of a deep recombination level and recombination in the space charge region (SCR) was additionally taken into account. In a simple approximation, the external quantum efficiency of the photocurrent for the indicated SC in the long-wavelength absorption region has been simulated. A theory has been proposed for calculating the thickness dependences of short-circuit current, open-circuit voltage and photoconversion efficiency in them. The calculated dependences are carefully compared with the experimental results obtained for SC with the p+-i-α-Si:H/n-c-Si/i-n+-α-Si:H architecture and the photoconversion efficiency of about 23%. As a result of this comparison, good agreement between the theoretical and calculated dependences has been obtained. It has been ascertained that without taking into account recombination in SCR, a quantitative agreement between the experimental and theoretical light I V characteristics and the dependence of the output power in the SC load on the voltage on it cannot be obtained. The proposed approach and the obtained results can be used to optimize the characteristics of textured SC based on monocrystalline silicon.\",\"PeriodicalId\":21598,\"journal\":{\"name\":\"Semiconductor physics, quantum electronics and optoelectronics\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductor physics, quantum electronics and optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/spqeo26.01.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor physics, quantum electronics and optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/spqeo26.01.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling of characteristics of highly efficient textured solar cells based on c-silicon. The influence of recombination in the space charge region
Theoretical modeling of the optical and photovoltaic characteristics of highly efficient textured silicon solar cells (SC), including short-circuit current, open-circuit voltage and photoconversion efficiency, has been performed in this work. In the modeling, such recombination mechanisms as non-radiative exciton recombination relative to the Auger mechanism with the participation of a deep recombination level and recombination in the space charge region (SCR) was additionally taken into account. In a simple approximation, the external quantum efficiency of the photocurrent for the indicated SC in the long-wavelength absorption region has been simulated. A theory has been proposed for calculating the thickness dependences of short-circuit current, open-circuit voltage and photoconversion efficiency in them. The calculated dependences are carefully compared with the experimental results obtained for SC with the p+-i-α-Si:H/n-c-Si/i-n+-α-Si:H architecture and the photoconversion efficiency of about 23%. As a result of this comparison, good agreement between the theoretical and calculated dependences has been obtained. It has been ascertained that without taking into account recombination in SCR, a quantitative agreement between the experimental and theoretical light I V characteristics and the dependence of the output power in the SC load on the voltage on it cannot be obtained. The proposed approach and the obtained results can be used to optimize the characteristics of textured SC based on monocrystalline silicon.