对非法交易的机器学习攻击

Robert James, Henry Leung, Artem Prokhorov
{"title":"对非法交易的机器学习攻击","authors":"Robert James, Henry Leung, Artem Prokhorov","doi":"10.2139/ssrn.3722391","DOIUrl":null,"url":null,"abstract":"We design an adaptive framework for the detection of illegal trading behavior. Its key component is an extension of a pattern recognition tool, originating from the field of signal processing and adapted to modern electronic systems of securities trading. The new methodology combines the flexibility of dynamic time warping with contemporary approaches from extreme value theory to explore large-scale order book data and accurately identify illegal trading patterns without access to any confirmed illegal transactions for training. The method is shown to achieve remarkable improvements over alternative approaches in the identification of suspected illegal insider trading cases in a high-frequency dataset provided by an international investment firm.","PeriodicalId":20999,"journal":{"name":"Regulation of Financial Institutions eJournal","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Machine Learning Attack on Illegal Trading\",\"authors\":\"Robert James, Henry Leung, Artem Prokhorov\",\"doi\":\"10.2139/ssrn.3722391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We design an adaptive framework for the detection of illegal trading behavior. Its key component is an extension of a pattern recognition tool, originating from the field of signal processing and adapted to modern electronic systems of securities trading. The new methodology combines the flexibility of dynamic time warping with contemporary approaches from extreme value theory to explore large-scale order book data and accurately identify illegal trading patterns without access to any confirmed illegal transactions for training. The method is shown to achieve remarkable improvements over alternative approaches in the identification of suspected illegal insider trading cases in a high-frequency dataset provided by an international investment firm.\",\"PeriodicalId\":20999,\"journal\":{\"name\":\"Regulation of Financial Institutions eJournal\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regulation of Financial Institutions eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3722391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regulation of Financial Institutions eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3722391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们设计了一个自适应框架来检测非法交易行为。它的关键组成部分是模式识别工具的扩展,起源于信号处理领域,并适应于现代电子证券交易系统。新方法将动态时间扭曲的灵活性与极值理论的现代方法相结合,探索大规模订单簿数据,并在不访问任何已确认的非法交易的情况下准确识别非法交易模式。在一家国际投资公司提供的高频数据集中,该方法在识别涉嫌非法内幕交易案件方面取得了显著的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Machine Learning Attack on Illegal Trading
We design an adaptive framework for the detection of illegal trading behavior. Its key component is an extension of a pattern recognition tool, originating from the field of signal processing and adapted to modern electronic systems of securities trading. The new methodology combines the flexibility of dynamic time warping with contemporary approaches from extreme value theory to explore large-scale order book data and accurately identify illegal trading patterns without access to any confirmed illegal transactions for training. The method is shown to achieve remarkable improvements over alternative approaches in the identification of suspected illegal insider trading cases in a high-frequency dataset provided by an international investment firm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Did FinTech Lenders Facilitate PPP Fraud? Financial Reform and Public Good Provision: Municipal Bankruptcy Law and the Financing of Hospitals How Do Acquisitions Affect the Mental Health of Employees? Anti-Discrimination Insurance Pricing: Regulations, Fairness Criteria, and Models The Unintended Benefits of Increased Disclosure Frequency: Evidence from the Brokerage House Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1