Pengfei Fan, M. Ruddlesden, Yufei Wang, Luming Zhao, Chao Lu, Lei Su
{"title":"半监督学习在多模光纤上实现了可扩展的高空间密度信道复用","authors":"Pengfei Fan, M. Ruddlesden, Yufei Wang, Luming Zhao, Chao Lu, Lei Su","doi":"10.23919/OECC/PSC53152.2022.9850043","DOIUrl":null,"url":null,"abstract":"We proposed a semi-supervised confidence-based learning approach (SCALA) to overcome the high-temporal-variability of multimode fiber (MMF) information channels, and experimentally demonstrated continuous transmission of high-spatial-density information with accuracy close to 100% over different MMFs.","PeriodicalId":31141,"journal":{"name":"Netcom","volume":"7 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Semi-supervised Learning Enabled Scalable High-Spatial-Density Channel Multiplexing over Multimode Fibers\",\"authors\":\"Pengfei Fan, M. Ruddlesden, Yufei Wang, Luming Zhao, Chao Lu, Lei Su\",\"doi\":\"10.23919/OECC/PSC53152.2022.9850043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We proposed a semi-supervised confidence-based learning approach (SCALA) to overcome the high-temporal-variability of multimode fiber (MMF) information channels, and experimentally demonstrated continuous transmission of high-spatial-density information with accuracy close to 100% over different MMFs.\",\"PeriodicalId\":31141,\"journal\":{\"name\":\"Netcom\",\"volume\":\"7 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Netcom\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/OECC/PSC53152.2022.9850043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Netcom","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OECC/PSC53152.2022.9850043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semi-supervised Learning Enabled Scalable High-Spatial-Density Channel Multiplexing over Multimode Fibers
We proposed a semi-supervised confidence-based learning approach (SCALA) to overcome the high-temporal-variability of multimode fiber (MMF) information channels, and experimentally demonstrated continuous transmission of high-spatial-density information with accuracy close to 100% over different MMFs.