{"title":"神经网络交替增量学习算法的开发与研究","authors":"A. Orlov, E. S. Abramova","doi":"10.18287/2412-6179-co-1203","DOIUrl":null,"url":null,"abstract":"In this paper, the relevance of developing methods and algorithms for neural network incremental learning is shown. Families of incremental learning techniques are presented. A possibility of using the extreme learning machine for incremental learning is assessed. Experiments show that the extreme learning machine is suitable for incremental learning, but as the number of training examples increases, the neural network becomes unsuitable for further learning. To solve this problem, we propose a neural network incremental learning algorithm that alternately uses the extreme learning machine to correct the only output layer network weights (operation mode) and the backpropagation method (deep learning) to correct all network weights (sleep mode). During the operation mode, the neural network is assumed to produce results or learn from new tasks, optimizing its weights in the sleep mode. The proposed algorithm features the ability for real-time adaption to changing external conditions in the operation mode. The effectiveness of the proposed algorithm is shown by an example of solving the approximation problem. Approximation results after each step of the algorithm are presented. A comparison of the mean square error values when using the extreme learning machine for incremental learning and the developed algorithm of neural network alternate incremental learning is made.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development and research of a neural network alternate incremental learning algorithm\",\"authors\":\"A. Orlov, E. S. Abramova\",\"doi\":\"10.18287/2412-6179-co-1203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the relevance of developing methods and algorithms for neural network incremental learning is shown. Families of incremental learning techniques are presented. A possibility of using the extreme learning machine for incremental learning is assessed. Experiments show that the extreme learning machine is suitable for incremental learning, but as the number of training examples increases, the neural network becomes unsuitable for further learning. To solve this problem, we propose a neural network incremental learning algorithm that alternately uses the extreme learning machine to correct the only output layer network weights (operation mode) and the backpropagation method (deep learning) to correct all network weights (sleep mode). During the operation mode, the neural network is assumed to produce results or learn from new tasks, optimizing its weights in the sleep mode. The proposed algorithm features the ability for real-time adaption to changing external conditions in the operation mode. The effectiveness of the proposed algorithm is shown by an example of solving the approximation problem. Approximation results after each step of the algorithm are presented. A comparison of the mean square error values when using the extreme learning machine for incremental learning and the developed algorithm of neural network alternate incremental learning is made.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1203\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1203","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Development and research of a neural network alternate incremental learning algorithm
In this paper, the relevance of developing methods and algorithms for neural network incremental learning is shown. Families of incremental learning techniques are presented. A possibility of using the extreme learning machine for incremental learning is assessed. Experiments show that the extreme learning machine is suitable for incremental learning, but as the number of training examples increases, the neural network becomes unsuitable for further learning. To solve this problem, we propose a neural network incremental learning algorithm that alternately uses the extreme learning machine to correct the only output layer network weights (operation mode) and the backpropagation method (deep learning) to correct all network weights (sleep mode). During the operation mode, the neural network is assumed to produce results or learn from new tasks, optimizing its weights in the sleep mode. The proposed algorithm features the ability for real-time adaption to changing external conditions in the operation mode. The effectiveness of the proposed algorithm is shown by an example of solving the approximation problem. Approximation results after each step of the algorithm are presented. A comparison of the mean square error values when using the extreme learning machine for incremental learning and the developed algorithm of neural network alternate incremental learning is made.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.