能源消耗相关碳排放预测的多智能体协同预测系统

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS Multiagent and Grid Systems Pub Date : 2021-01-01 DOI:10.3233/MGS-210342
S. Bouziane, Tarek Khadir, J. Dugdale
{"title":"能源消耗相关碳排放预测的多智能体协同预测系统","authors":"S. Bouziane, Tarek Khadir, J. Dugdale","doi":"10.3233/MGS-210342","DOIUrl":null,"url":null,"abstract":"Energy production and consumption are one of the largest sources of greenhouse gases (GHG), along with industry, and is one of the highest causes of global warming. Forecasting the environmental cost of energy production is necessary for better decision making and easing the switch to cleaner energy systems in order to reduce air pollution. This paper describes a hybrid approach based on Artificial Neural Networks (ANN) and an agent-based architecture for forecasting carbon dioxide (CO2) issued from different energy sources in the city of Annaba using real data. The system consists of multiple autonomous agents, divided into two types: firstly, forecasting agents, which forecast the production of a particular type of energy using the ANN models; secondly, core agents that perform other essential functionalities such as calculating the equivalent CO2 emissions and controlling the simulation. The development is based on Algerian gas and electricity data provided by the national energy company. The simulation consists firstly of forecasting energy production using the forecasting agents and calculating the equivalent emitted CO2. Secondly, a dedicated agent calculates the total CO2 emitted from all the available sources. It then computes the benefits of using renewable energy sources as an alternative way to meet the electric load in terms of emission mitigation and economizing natural gas consumption. The forecasting models showed satisfying results, and the simulation scenario showed that using renewable energy can help reduce the emissions by 369 tons of CO2 (3%) per day.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":"13 1","pages":"39-58"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A collaborative predictive multi-agent system for forecasting carbon emissions related to energy consumption\",\"authors\":\"S. Bouziane, Tarek Khadir, J. Dugdale\",\"doi\":\"10.3233/MGS-210342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy production and consumption are one of the largest sources of greenhouse gases (GHG), along with industry, and is one of the highest causes of global warming. Forecasting the environmental cost of energy production is necessary for better decision making and easing the switch to cleaner energy systems in order to reduce air pollution. This paper describes a hybrid approach based on Artificial Neural Networks (ANN) and an agent-based architecture for forecasting carbon dioxide (CO2) issued from different energy sources in the city of Annaba using real data. The system consists of multiple autonomous agents, divided into two types: firstly, forecasting agents, which forecast the production of a particular type of energy using the ANN models; secondly, core agents that perform other essential functionalities such as calculating the equivalent CO2 emissions and controlling the simulation. The development is based on Algerian gas and electricity data provided by the national energy company. The simulation consists firstly of forecasting energy production using the forecasting agents and calculating the equivalent emitted CO2. Secondly, a dedicated agent calculates the total CO2 emitted from all the available sources. It then computes the benefits of using renewable energy sources as an alternative way to meet the electric load in terms of emission mitigation and economizing natural gas consumption. The forecasting models showed satisfying results, and the simulation scenario showed that using renewable energy can help reduce the emissions by 369 tons of CO2 (3%) per day.\",\"PeriodicalId\":43659,\"journal\":{\"name\":\"Multiagent and Grid Systems\",\"volume\":\"13 1\",\"pages\":\"39-58\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiagent and Grid Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/MGS-210342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiagent and Grid Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/MGS-210342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 4

摘要

能源生产和消费是温室气体(GHG)的最大来源之一,与工业一样,是全球变暖的最高原因之一。预测能源生产的环境成本对于作出更好的决策和简化向清洁能源系统的转换以减少空气污染是必要的。本文描述了一种基于人工神经网络(ANN)和基于智能体(agent)的混合方法,用于利用真实数据预测安纳巴市不同能源排放的二氧化碳(CO2)。该系统由多个自主智能体组成,分为两类:一类是预测智能体,利用人工神经网络模型预测特定类型能源的产量;其次,执行其他基本功能的核心代理,如计算等效二氧化碳排放量和控制模拟。该开发是基于国家能源公司提供的阿尔及利亚天然气和电力数据。仿真首先包括利用预测代理预测能源生产和计算当量二氧化碳排放量。其次,一个专门的代理计算所有可用源排放的二氧化碳总量。然后计算使用可再生能源作为满足电力负荷的替代方法在减少排放和节约天然气消耗方面的好处。预测模型取得了令人满意的结果,模拟情景表明,使用可再生能源每天可减少二氧化碳排放369吨(3%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A collaborative predictive multi-agent system for forecasting carbon emissions related to energy consumption
Energy production and consumption are one of the largest sources of greenhouse gases (GHG), along with industry, and is one of the highest causes of global warming. Forecasting the environmental cost of energy production is necessary for better decision making and easing the switch to cleaner energy systems in order to reduce air pollution. This paper describes a hybrid approach based on Artificial Neural Networks (ANN) and an agent-based architecture for forecasting carbon dioxide (CO2) issued from different energy sources in the city of Annaba using real data. The system consists of multiple autonomous agents, divided into two types: firstly, forecasting agents, which forecast the production of a particular type of energy using the ANN models; secondly, core agents that perform other essential functionalities such as calculating the equivalent CO2 emissions and controlling the simulation. The development is based on Algerian gas and electricity data provided by the national energy company. The simulation consists firstly of forecasting energy production using the forecasting agents and calculating the equivalent emitted CO2. Secondly, a dedicated agent calculates the total CO2 emitted from all the available sources. It then computes the benefits of using renewable energy sources as an alternative way to meet the electric load in terms of emission mitigation and economizing natural gas consumption. The forecasting models showed satisfying results, and the simulation scenario showed that using renewable energy can help reduce the emissions by 369 tons of CO2 (3%) per day.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Multiagent and Grid Systems
Multiagent and Grid Systems COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
1.50
自引率
0.00%
发文量
13
期刊最新文献
Adam Adadelta Optimization based bidirectional encoder representations from transformers model for fake news detection on social media Hybrid trust-based optimized virtual machine migration for dynamic load balancing and replica management in heterogeneous cloud Load balancing model for cloud environment using swarm intelligence technique An evolutionary mechanism of social preference for knowledge sharing in crowdsourcing communities Skin cancer detection: Improved deep belief network with optimal feature selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1