一种安全卷积神经网络加速器的设计

Zheng Xu, J. Abraham
{"title":"一种安全卷积神经网络加速器的设计","authors":"Zheng Xu, J. Abraham","doi":"10.1109/ISVLSI.2019.00053","DOIUrl":null,"url":null,"abstract":"Recently Machine Learning (ML) accelerators have grown into prominence with significant power and performance efficiency improvements over CPU and GPU. In this paper, we developed an Algorithm Based Error Checker (ABEC) for Concurrent Error Detection (CED) based on an industry quality Convolution Neural Network (CNN) accelerator with priority to meet high safety Diagnostic Coverage (DC) requirement and enhanced area and power efficiency. Furthermore, we developed an Algorithm Based Cluster Checker (ABCC) with coarse-grained error localization to improve run-time availability. Experimental results showed that we could achieve above 99% DC with only 30% area and power overhead for a selected configuration.","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"34 1","pages":"247-252"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of a Safe Convolutional Neural Network Accelerator\",\"authors\":\"Zheng Xu, J. Abraham\",\"doi\":\"10.1109/ISVLSI.2019.00053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently Machine Learning (ML) accelerators have grown into prominence with significant power and performance efficiency improvements over CPU and GPU. In this paper, we developed an Algorithm Based Error Checker (ABEC) for Concurrent Error Detection (CED) based on an industry quality Convolution Neural Network (CNN) accelerator with priority to meet high safety Diagnostic Coverage (DC) requirement and enhanced area and power efficiency. Furthermore, we developed an Algorithm Based Cluster Checker (ABCC) with coarse-grained error localization to improve run-time availability. Experimental results showed that we could achieve above 99% DC with only 30% area and power overhead for a selected configuration.\",\"PeriodicalId\":6703,\"journal\":{\"name\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"34 1\",\"pages\":\"247-252\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2019.00053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近,机器学习(ML)加速器变得越来越突出,与CPU和GPU相比,它的功率和性能效率都有了显著提高。本文基于卷积神经网络(CNN)加速器,开发了一种基于算法的并发错误检测(CED)错误检查器(ABEC),以满足高安全诊断覆盖率(DC)要求,并提高了面积和功率效率。此外,我们开发了一个基于算法的集群检查器(ABCC),具有粗粒度的错误定位,以提高运行时的可用性。实验结果表明,对于选定的配置,我们可以在只有30%的面积和功率开销的情况下实现99%以上的直流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of a Safe Convolutional Neural Network Accelerator
Recently Machine Learning (ML) accelerators have grown into prominence with significant power and performance efficiency improvements over CPU and GPU. In this paper, we developed an Algorithm Based Error Checker (ABEC) for Concurrent Error Detection (CED) based on an industry quality Convolution Neural Network (CNN) accelerator with priority to meet high safety Diagnostic Coverage (DC) requirement and enhanced area and power efficiency. Furthermore, we developed an Algorithm Based Cluster Checker (ABCC) with coarse-grained error localization to improve run-time availability. Experimental results showed that we could achieve above 99% DC with only 30% area and power overhead for a selected configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ferroelectric FET Based TCAM Designs for Energy Efficient Computing Evaluation of Compilers Effects on OpenMP Soft Error Resiliency Towards Efficient Compact Network Training on Edge-Devices PageCmp: Bandwidth Efficient Page Deduplication through In-memory Page Comparison Improving Logic Optimization in Sequential Circuits using Majority-inverter Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1