N. Watanabe, Y. Isono, T. Kakinaga, T. Nagamura, T. Sasaki
{"title":"热驱动多探针悬臂阵列扫描探针并行纳米书写系统","authors":"N. Watanabe, Y. Isono, T. Kakinaga, T. Nagamura, T. Sasaki","doi":"10.1109/MEMSYS.2007.4433024","DOIUrl":null,"url":null,"abstract":"This research developed an individually driving one-dimensional (1D) multi-probes cantilever array used in a scanning probe parallel nano writing system. The multi-probes cantilever array comprises two kinds of probes for writing and imaging. The writing probes each have thermal actuators for an on-off switch of contact between probes and a sample surface, whereas imaging probes function as a piezoresistive sensor for detecting a deflection of the cantilever array. This study prepared several kinds of writing probes by changing the electrical heater pattern of the actuators and the cantilever length, based on electro thermo-mechanical coupled FE simulations. Consequently, we were able to determine a better design for the multi-probes cantilever array.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"7 1","pages":"99-102"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Thermal actuated multi-probes cantilever array for scanning probe parallel nano writing system\",\"authors\":\"N. Watanabe, Y. Isono, T. Kakinaga, T. Nagamura, T. Sasaki\",\"doi\":\"10.1109/MEMSYS.2007.4433024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research developed an individually driving one-dimensional (1D) multi-probes cantilever array used in a scanning probe parallel nano writing system. The multi-probes cantilever array comprises two kinds of probes for writing and imaging. The writing probes each have thermal actuators for an on-off switch of contact between probes and a sample surface, whereas imaging probes function as a piezoresistive sensor for detecting a deflection of the cantilever array. This study prepared several kinds of writing probes by changing the electrical heater pattern of the actuators and the cantilever length, based on electro thermo-mechanical coupled FE simulations. Consequently, we were able to determine a better design for the multi-probes cantilever array.\",\"PeriodicalId\":6388,\"journal\":{\"name\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"7 1\",\"pages\":\"99-102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2007.4433024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2007.4433024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal actuated multi-probes cantilever array for scanning probe parallel nano writing system
This research developed an individually driving one-dimensional (1D) multi-probes cantilever array used in a scanning probe parallel nano writing system. The multi-probes cantilever array comprises two kinds of probes for writing and imaging. The writing probes each have thermal actuators for an on-off switch of contact between probes and a sample surface, whereas imaging probes function as a piezoresistive sensor for detecting a deflection of the cantilever array. This study prepared several kinds of writing probes by changing the electrical heater pattern of the actuators and the cantilever length, based on electro thermo-mechanical coupled FE simulations. Consequently, we were able to determine a better design for the multi-probes cantilever array.