Zhang Yongkang, Shang Ying, Wang Chen, Zhao Wenan, Li Chang, Cao Bing, Wang Chang
{"title":"分布式光纤入侵信号的检测与识别","authors":"Zhang Yongkang, Shang Ying, Wang Chen, Zhao Wenan, Li Chang, Cao Bing, Wang Chang","doi":"10.12086/OEE.2021.200254","DOIUrl":null,"url":null,"abstract":"Distributed acoustic sensing (DAS) technology can detect acoustic or vibration signals with high sensitivity and wide dynamic range by receiving the phase information from coherent Rayleigh scattered light. Linear quanti-zation is used to measure high fidelity restoration of the signals. With the increasing demand of practical applications, the optical fiber intrusion detection field has put forward higher requirements for event location and identification, which is manifested as the accurate classification of intrusion events. Therefore, the combination of distributed acoustic sensing and pattern recognition (PR) technology is a hot research topic at present. This is beneficial to promote the application and development of distributed optical fiber sensing technology. The research progress of the pattern recognition technology applied to distributed optical fiber intrusion detection in recent years is summarized in this paper, which can be used for feature extraction and classification algorithm research progress. In this paper, several feature extraction methods for realizing intrusion event signal recognition and their feature selection difficulties in different application situations are reviewed. Meanwhile, the advantages and disadvantages of specific event recognition algorithm are analyzed and summarized.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection and recognition of distributed optical fiber intrusion signal\",\"authors\":\"Zhang Yongkang, Shang Ying, Wang Chen, Zhao Wenan, Li Chang, Cao Bing, Wang Chang\",\"doi\":\"10.12086/OEE.2021.200254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed acoustic sensing (DAS) technology can detect acoustic or vibration signals with high sensitivity and wide dynamic range by receiving the phase information from coherent Rayleigh scattered light. Linear quanti-zation is used to measure high fidelity restoration of the signals. With the increasing demand of practical applications, the optical fiber intrusion detection field has put forward higher requirements for event location and identification, which is manifested as the accurate classification of intrusion events. Therefore, the combination of distributed acoustic sensing and pattern recognition (PR) technology is a hot research topic at present. This is beneficial to promote the application and development of distributed optical fiber sensing technology. The research progress of the pattern recognition technology applied to distributed optical fiber intrusion detection in recent years is summarized in this paper, which can be used for feature extraction and classification algorithm research progress. In this paper, several feature extraction methods for realizing intrusion event signal recognition and their feature selection difficulties in different application situations are reviewed. Meanwhile, the advantages and disadvantages of specific event recognition algorithm are analyzed and summarized.\",\"PeriodicalId\":39552,\"journal\":{\"name\":\"光电工程\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光电工程\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12086/OEE.2021.200254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Detection and recognition of distributed optical fiber intrusion signal
Distributed acoustic sensing (DAS) technology can detect acoustic or vibration signals with high sensitivity and wide dynamic range by receiving the phase information from coherent Rayleigh scattered light. Linear quanti-zation is used to measure high fidelity restoration of the signals. With the increasing demand of practical applications, the optical fiber intrusion detection field has put forward higher requirements for event location and identification, which is manifested as the accurate classification of intrusion events. Therefore, the combination of distributed acoustic sensing and pattern recognition (PR) technology is a hot research topic at present. This is beneficial to promote the application and development of distributed optical fiber sensing technology. The research progress of the pattern recognition technology applied to distributed optical fiber intrusion detection in recent years is summarized in this paper, which can be used for feature extraction and classification algorithm research progress. In this paper, several feature extraction methods for realizing intrusion event signal recognition and their feature selection difficulties in different application situations are reviewed. Meanwhile, the advantages and disadvantages of specific event recognition algorithm are analyzed and summarized.