{"title":"反铁磁自旋霍尔振荡器与外部交流信号的分式同步","authors":"D. Slobodianiuk, O. Prokopenko","doi":"10.1109/NAP51885.2021.9568506","DOIUrl":null,"url":null,"abstract":"We demonstrate both theoretically and numerically that an antiferromagnetic (AFM) spin Hall oscillator (SHO) biased by a DC current can be synchronized to an external AC signal when the oscillator’s frequency and external signal frequency are in fractional relation. This regime of SHO operation, the so-called fractional synchronization regime, can be achieved by choosing a specific ratio between AC signal frequency and the driving DC current subjected to an SHO. The obtained results could be important for the development of nanoscale terahertz-frequency AFM spintronic devices able to operate in a wide frequency range.","PeriodicalId":6735,"journal":{"name":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"190 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fractional Synchronization of Antiferromagnetic Spin Hall Oscillator with External AC Signal\",\"authors\":\"D. Slobodianiuk, O. Prokopenko\",\"doi\":\"10.1109/NAP51885.2021.9568506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate both theoretically and numerically that an antiferromagnetic (AFM) spin Hall oscillator (SHO) biased by a DC current can be synchronized to an external AC signal when the oscillator’s frequency and external signal frequency are in fractional relation. This regime of SHO operation, the so-called fractional synchronization regime, can be achieved by choosing a specific ratio between AC signal frequency and the driving DC current subjected to an SHO. The obtained results could be important for the development of nanoscale terahertz-frequency AFM spintronic devices able to operate in a wide frequency range.\",\"PeriodicalId\":6735,\"journal\":{\"name\":\"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)\",\"volume\":\"190 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAP51885.2021.9568506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAP51885.2021.9568506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fractional Synchronization of Antiferromagnetic Spin Hall Oscillator with External AC Signal
We demonstrate both theoretically and numerically that an antiferromagnetic (AFM) spin Hall oscillator (SHO) biased by a DC current can be synchronized to an external AC signal when the oscillator’s frequency and external signal frequency are in fractional relation. This regime of SHO operation, the so-called fractional synchronization regime, can be achieved by choosing a specific ratio between AC signal frequency and the driving DC current subjected to an SHO. The obtained results could be important for the development of nanoscale terahertz-frequency AFM spintronic devices able to operate in a wide frequency range.