基于Lasso回归和人工神经网络的女性2型糖尿病检测新方法

Y. Singh, Mahendra Tiwari
{"title":"基于Lasso回归和人工神经网络的女性2型糖尿病检测新方法","authors":"Y. Singh, Mahendra Tiwari","doi":"10.5815/ijisa.2022.04.02","DOIUrl":null,"url":null,"abstract":"Diabetes is a life-threatening and long-lasting illness that produces high blood glucose levels. Diabetes may cause various diseases, including liver disease, blindness, amputation, urinary organ infections, etc. This research work aims to introduce a hybrid framework to enhance outcomes predictability and interoperability with reduced ill-posed problems, over-fitting problems, and class imbalance problems for diagnosing diabetes mellitus using data mining techniques. Diabetes may be recognized in many ways. One of these methods is data mining techniques. The use of data mining to medical data has yielded meaningful, significant, and effective results that may improve medical expertise and decision-making. This study suggests a hybrid technique for detecting DM that combines the lasso regression algorithm with the artificial neural network (ANN) classifier algorithm. The Lasso regression technique is used for variable selection and regularization. Because the dataset was shrunk, the computing time was considerably minimized. The ANN classifier received the Lasso regression output as an input and classified patients correctly as diabetic and non-diabetic, i.e., tested positives and negatives. The Pima Indians dataset was used in this experiment, consisting of 768 samples of female participants who are diabetic and non-diabetic. According to experimental observations, the proposed hybrid technique achieved 93% classification accuracy for predicting diabetes mellitus. The experimental results showed that our proposed method had a classification accuracy of 93% for determining whether a patient has diabetes or not. The experimental outcomes demonstrated that a hybrid data-mining approach might assist clinicians in making better diagnoses when identifying diabetes patients.","PeriodicalId":14067,"journal":{"name":"International Journal of Intelligent Systems and Applications in Engineering","volume":"127 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Hybrid Approach for Detection of Type-2 Diabetes in Women Using Lasso Regression and Artificial Neural Network\",\"authors\":\"Y. Singh, Mahendra Tiwari\",\"doi\":\"10.5815/ijisa.2022.04.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes is a life-threatening and long-lasting illness that produces high blood glucose levels. Diabetes may cause various diseases, including liver disease, blindness, amputation, urinary organ infections, etc. This research work aims to introduce a hybrid framework to enhance outcomes predictability and interoperability with reduced ill-posed problems, over-fitting problems, and class imbalance problems for diagnosing diabetes mellitus using data mining techniques. Diabetes may be recognized in many ways. One of these methods is data mining techniques. The use of data mining to medical data has yielded meaningful, significant, and effective results that may improve medical expertise and decision-making. This study suggests a hybrid technique for detecting DM that combines the lasso regression algorithm with the artificial neural network (ANN) classifier algorithm. The Lasso regression technique is used for variable selection and regularization. Because the dataset was shrunk, the computing time was considerably minimized. The ANN classifier received the Lasso regression output as an input and classified patients correctly as diabetic and non-diabetic, i.e., tested positives and negatives. The Pima Indians dataset was used in this experiment, consisting of 768 samples of female participants who are diabetic and non-diabetic. According to experimental observations, the proposed hybrid technique achieved 93% classification accuracy for predicting diabetes mellitus. The experimental results showed that our proposed method had a classification accuracy of 93% for determining whether a patient has diabetes or not. The experimental outcomes demonstrated that a hybrid data-mining approach might assist clinicians in making better diagnoses when identifying diabetes patients.\",\"PeriodicalId\":14067,\"journal\":{\"name\":\"International Journal of Intelligent Systems and Applications in Engineering\",\"volume\":\"127 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems and Applications in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijisa.2022.04.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems and Applications in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijisa.2022.04.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

糖尿病是一种危及生命的长期疾病,会导致高血糖水平。糖尿病可引起多种疾病,包括肝病、失明、截肢、泌尿器官感染等。本研究旨在引入一个混合框架,以提高结果的可预测性和互操作性,减少不适定问题、过拟合问题和类不平衡问题,用于使用数据挖掘技术诊断糖尿病。糖尿病的诊断方法有很多。其中一种方法是数据挖掘技术。将数据挖掘用于医疗数据已经产生了有意义的、重要的和有效的结果,可以提高医疗专业知识和决策。本研究提出了一种将lasso回归算法与人工神经网络(ANN)分类器算法相结合的混合DM检测技术。Lasso回归技术用于变量选择和正则化。由于数据集缩小了,计算时间大大减少。ANN分类器将Lasso回归输出作为输入,并将患者正确分类为糖尿病和非糖尿病,即检测阳性和阴性。实验中使用了皮马印第安人的数据集,包括768名患有糖尿病和非糖尿病的女性参与者。实验结果表明,该方法对糖尿病的预测准确率达到93%。实验结果表明,我们提出的方法在判断患者是否患有糖尿病方面的分类准确率为93%。实验结果表明,混合数据挖掘方法可以帮助临床医生在识别糖尿病患者时做出更好的诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Hybrid Approach for Detection of Type-2 Diabetes in Women Using Lasso Regression and Artificial Neural Network
Diabetes is a life-threatening and long-lasting illness that produces high blood glucose levels. Diabetes may cause various diseases, including liver disease, blindness, amputation, urinary organ infections, etc. This research work aims to introduce a hybrid framework to enhance outcomes predictability and interoperability with reduced ill-posed problems, over-fitting problems, and class imbalance problems for diagnosing diabetes mellitus using data mining techniques. Diabetes may be recognized in many ways. One of these methods is data mining techniques. The use of data mining to medical data has yielded meaningful, significant, and effective results that may improve medical expertise and decision-making. This study suggests a hybrid technique for detecting DM that combines the lasso regression algorithm with the artificial neural network (ANN) classifier algorithm. The Lasso regression technique is used for variable selection and regularization. Because the dataset was shrunk, the computing time was considerably minimized. The ANN classifier received the Lasso regression output as an input and classified patients correctly as diabetic and non-diabetic, i.e., tested positives and negatives. The Pima Indians dataset was used in this experiment, consisting of 768 samples of female participants who are diabetic and non-diabetic. According to experimental observations, the proposed hybrid technique achieved 93% classification accuracy for predicting diabetes mellitus. The experimental results showed that our proposed method had a classification accuracy of 93% for determining whether a patient has diabetes or not. The experimental outcomes demonstrated that a hybrid data-mining approach might assist clinicians in making better diagnoses when identifying diabetes patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Intelligent Systems and Applications in Engineering
International Journal of Intelligent Systems and Applications in Engineering Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.30
自引率
0.00%
发文量
18
期刊最新文献
Predicting Automobile Stock Prices Index in the Tehran Stock Exchange Using Machine Learning Models A Hybrid Unsupervised Density-based Approach with Mutual Information for Text Outlier Detection Digital Control and Management of Water Supply Infrastructure Using Embedded Systems and Machine Learning Machine Learning for Weather Forecasting: XGBoost vs SVM vs Random Forest in Predicting Temperature for Visakhapatnam An Enhanced Approach to Recommend Data Structures and Algorithms Problems Using Content-based Filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1