六方氮化硼纳米片增强聚丙烯纳米复合薄膜的制备与表征

IF 1.4 4区 工程技术 Q3 ENGINEERING, CHEMICAL Periodica Polytechnica Chemical Engineering Pub Date : 2023-01-09 DOI:10.3311/ppch.20589
G. Bayramoglu, Mehmet Mudu
{"title":"六方氮化硼纳米片增强聚丙烯纳米复合薄膜的制备与表征","authors":"G. Bayramoglu, Mehmet Mudu","doi":"10.3311/ppch.20589","DOIUrl":null,"url":null,"abstract":"In this study, we synthesized hexagonal boron nitride nanosheets (h-BNN) via the molten hydroxide exfoliation method which results in small flakes and nanoscrolls. The resultant h-BNNs can be dispersed in various solvents such as water, ethanol, and acetone, and form a stable dispersion. The morphological and structural analysis of h-BNNs were performed with Fourier Transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), and scanning electron microscopy (SEM). The masterbatch (MB) method was used to incorporate the h-BNNs into the polypropylene (PP) matrix via melt mixing. Dilution and film production processes were performed using a twin screw extruder. Nanocomposite films having an h-BNN weight ratio of 1%, 2%, 3%, and 5% were prepared. Thermogravimetric analyzer (TGA) and differential scanning calorimetry (DSC) were used to investigate the thermal stability. Crystallization (Tc) temperatures were increased with the increased amount of h-BNNs and h-BNNs nucleating agent behavior on the PP crystallization was observed. Oxidation induction time (OIT) of the pure PP was increased from 8.84 min to 17.82 min. The results show a considerable effect of the h-BNN content on the thermo-oxidative stability of the nanocomposites studied. The rheological and mechanical properties of the PP-hBNN nanocomposite films were also determined depending on the particle loading ratio. Optimum particle content providing the best thermal, mechanical, and rheological properties were found to be 3% wt.","PeriodicalId":19922,"journal":{"name":"Periodica Polytechnica Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Processing and Characterization of Polypropylene Nanocomposite Films Reinforced with Hexagonal Boron Nitride Nanosheets\",\"authors\":\"G. Bayramoglu, Mehmet Mudu\",\"doi\":\"10.3311/ppch.20589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we synthesized hexagonal boron nitride nanosheets (h-BNN) via the molten hydroxide exfoliation method which results in small flakes and nanoscrolls. The resultant h-BNNs can be dispersed in various solvents such as water, ethanol, and acetone, and form a stable dispersion. The morphological and structural analysis of h-BNNs were performed with Fourier Transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), and scanning electron microscopy (SEM). The masterbatch (MB) method was used to incorporate the h-BNNs into the polypropylene (PP) matrix via melt mixing. Dilution and film production processes were performed using a twin screw extruder. Nanocomposite films having an h-BNN weight ratio of 1%, 2%, 3%, and 5% were prepared. Thermogravimetric analyzer (TGA) and differential scanning calorimetry (DSC) were used to investigate the thermal stability. Crystallization (Tc) temperatures were increased with the increased amount of h-BNNs and h-BNNs nucleating agent behavior on the PP crystallization was observed. Oxidation induction time (OIT) of the pure PP was increased from 8.84 min to 17.82 min. The results show a considerable effect of the h-BNN content on the thermo-oxidative stability of the nanocomposites studied. The rheological and mechanical properties of the PP-hBNN nanocomposite films were also determined depending on the particle loading ratio. Optimum particle content providing the best thermal, mechanical, and rheological properties were found to be 3% wt.\",\"PeriodicalId\":19922,\"journal\":{\"name\":\"Periodica Polytechnica Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Polytechnica Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppch.20589\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppch.20589","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们采用熔融氢氧化物剥离法合成了六方氮化硼纳米片(h-BNN),得到了小薄片和纳米卷。得到的h- bnn可以分散在各种溶剂中,如水、乙醇和丙酮,并形成稳定的分散体。利用傅里叶变换红外光谱(FTIR)、x射线衍射(XRD)和扫描电镜(SEM)对h-BNNs进行了形态和结构分析。采用母粒(MB)法将h-BNNs通过熔融混合掺入聚丙烯(PP)基体中。稀释和薄膜生产过程使用双螺杆挤出机进行。制备了h-BNN重量比分别为1%、2%、3%和5%的纳米复合膜。采用热重分析仪(TGA)和差示扫描量热仪(DSC)对其热稳定性进行了研究。结晶温度(Tc)随h-BNNs用量的增加而升高,并观察到h-BNNs成核剂对PP结晶的影响。纯PP的氧化诱导时间(OIT)从8.84 min增加到17.82 min。结果表明,h-BNN含量对所研究的纳米复合材料的热氧化稳定性有相当大的影响。PP-hBNN纳米复合膜的流变学和力学性能也随颗粒负载比的变化而变化。最佳颗粒含量提供最佳的热,机械和流变性能被发现是3%重量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Processing and Characterization of Polypropylene Nanocomposite Films Reinforced with Hexagonal Boron Nitride Nanosheets
In this study, we synthesized hexagonal boron nitride nanosheets (h-BNN) via the molten hydroxide exfoliation method which results in small flakes and nanoscrolls. The resultant h-BNNs can be dispersed in various solvents such as water, ethanol, and acetone, and form a stable dispersion. The morphological and structural analysis of h-BNNs were performed with Fourier Transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), and scanning electron microscopy (SEM). The masterbatch (MB) method was used to incorporate the h-BNNs into the polypropylene (PP) matrix via melt mixing. Dilution and film production processes were performed using a twin screw extruder. Nanocomposite films having an h-BNN weight ratio of 1%, 2%, 3%, and 5% were prepared. Thermogravimetric analyzer (TGA) and differential scanning calorimetry (DSC) were used to investigate the thermal stability. Crystallization (Tc) temperatures were increased with the increased amount of h-BNNs and h-BNNs nucleating agent behavior on the PP crystallization was observed. Oxidation induction time (OIT) of the pure PP was increased from 8.84 min to 17.82 min. The results show a considerable effect of the h-BNN content on the thermo-oxidative stability of the nanocomposites studied. The rheological and mechanical properties of the PP-hBNN nanocomposite films were also determined depending on the particle loading ratio. Optimum particle content providing the best thermal, mechanical, and rheological properties were found to be 3% wt.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
7.70%
发文量
44
审稿时长
>12 weeks
期刊介绍: The main scope of the journal is to publish original research articles in the wide field of chemical engineering including environmental and bioengineering.
期刊最新文献
The Nanostructure Based SnS Chalcogenide Semiconductor: A Detailed Investigation of Physical and Electrical Properties Study and Optimization of a New Perovskite Solar Cell Structure Based on the Two Absorber Materials Cs2TiBr6 and MASnBr3 Using SCAPS 1D Metal Oxide-based Nanoparticles for Environmental Remediation: Drawbacks and Opportunities Effect of Nanophotocatalyst WO3 Addition on PVDF Membrane Characteristics and Performance Mathematical-model Analysis of the Potential Exposure to Lead, Zinc and Iron Emissions from Consumption of Premium Motor Spirit in Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1