基于卷积神经网络的非均匀测量条件下不确定性结构损伤识别

Siyu Zhu, T. Xiang
{"title":"基于卷积神经网络的非均匀测量条件下不确定性结构损伤识别","authors":"Siyu Zhu, T. Xiang","doi":"10.1155/2023/8325686","DOIUrl":null,"url":null,"abstract":"Dynamic-vibration-based structural damage identification (SDI) represents the main target for structural health monitoring (SHM). It is significant to consider the unavoidable uncertainties arising from both the structure and measuring noise. On the other hand, nonuniform measurement conditions often appear in actual SHM applications, which consist of two parts, i.e., spatial nonuniform characteristics for noises are induced by various intensities of input noise in every single sampling channel and multisensor stays in a damaged state. This paper proposes a new method for the SDI considering uncertainties in nonuniform measurement conditions integrating convolutional neural network (CNN). Herein, the great ability of feature extraction from the measurement associated with the convolutional network is used to handle the input data, and the mapping connection between the selected features and damage states is established. Time histories of structural responses, such as acceleration, are applied for damage identification. The application and accuracy of the CNN, which is trained with input uncertain parameters contaminated by stochastic noises, are verified by the finite element numerical and experimental results. Both uncertain parameters and measurement conditions are considered in the verification. The responses obtained from the numerical and experimental approach show that the proposed neural network model can identify the structural damage with high accuracy. The great robustness of the proposed method is examined by studying the influence of uncertainties, even considering the nonuniform measurement condition.","PeriodicalId":22049,"journal":{"name":"Structural Control and Health Monitoring","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Damage Identification considering Uncertainties in Nonuniform Measurement Conditions Based on Convolution Neural Networks\",\"authors\":\"Siyu Zhu, T. Xiang\",\"doi\":\"10.1155/2023/8325686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic-vibration-based structural damage identification (SDI) represents the main target for structural health monitoring (SHM). It is significant to consider the unavoidable uncertainties arising from both the structure and measuring noise. On the other hand, nonuniform measurement conditions often appear in actual SHM applications, which consist of two parts, i.e., spatial nonuniform characteristics for noises are induced by various intensities of input noise in every single sampling channel and multisensor stays in a damaged state. This paper proposes a new method for the SDI considering uncertainties in nonuniform measurement conditions integrating convolutional neural network (CNN). Herein, the great ability of feature extraction from the measurement associated with the convolutional network is used to handle the input data, and the mapping connection between the selected features and damage states is established. Time histories of structural responses, such as acceleration, are applied for damage identification. The application and accuracy of the CNN, which is trained with input uncertain parameters contaminated by stochastic noises, are verified by the finite element numerical and experimental results. Both uncertain parameters and measurement conditions are considered in the verification. The responses obtained from the numerical and experimental approach show that the proposed neural network model can identify the structural damage with high accuracy. The great robustness of the proposed method is examined by studying the influence of uncertainties, even considering the nonuniform measurement condition.\",\"PeriodicalId\":22049,\"journal\":{\"name\":\"Structural Control and Health Monitoring\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control and Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8325686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control and Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8325686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于动力振动的结构损伤识别(SDI)是结构健康监测的主要目标。考虑结构和测量噪声引起的不可避免的不确定性是很重要的。另一方面,在实际的SHM应用中,往往会出现非均匀测量条件,这包括两个部分,即每个采样通道中不同强度的输入噪声引起噪声的空间非均匀性,多传感器处于损坏状态。本文提出了一种利用卷积神经网络(CNN)求解非均匀测量条件下不确定性的SDI的新方法。其中,利用卷积网络对测量数据的强大特征提取能力对输入数据进行处理,并建立所选特征与损伤状态之间的映射关系。结构响应的时程,如加速度,用于损伤识别。通过有限元数值和实验结果验证了在随机噪声污染下输入不确定参数训练的CNN的适用性和准确性。验证时考虑了不确定参数和测量条件。数值和实验结果表明,所提出的神经网络模型能够较准确地识别结构损伤。在考虑非均匀测量条件的情况下,通过研究不确定性的影响,验证了该方法的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural Damage Identification considering Uncertainties in Nonuniform Measurement Conditions Based on Convolution Neural Networks
Dynamic-vibration-based structural damage identification (SDI) represents the main target for structural health monitoring (SHM). It is significant to consider the unavoidable uncertainties arising from both the structure and measuring noise. On the other hand, nonuniform measurement conditions often appear in actual SHM applications, which consist of two parts, i.e., spatial nonuniform characteristics for noises are induced by various intensities of input noise in every single sampling channel and multisensor stays in a damaged state. This paper proposes a new method for the SDI considering uncertainties in nonuniform measurement conditions integrating convolutional neural network (CNN). Herein, the great ability of feature extraction from the measurement associated with the convolutional network is used to handle the input data, and the mapping connection between the selected features and damage states is established. Time histories of structural responses, such as acceleration, are applied for damage identification. The application and accuracy of the CNN, which is trained with input uncertain parameters contaminated by stochastic noises, are verified by the finite element numerical and experimental results. Both uncertain parameters and measurement conditions are considered in the verification. The responses obtained from the numerical and experimental approach show that the proposed neural network model can identify the structural damage with high accuracy. The great robustness of the proposed method is examined by studying the influence of uncertainties, even considering the nonuniform measurement condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Damage Detection and Localization at the Jacket Support of an Offshore Wind Turbine Using Transformer Models A Model-Based Bayesian Inference Approach for On-Board Monitoring of Rail Roughness Profiles: Application on Field Measurement Data of the Swiss Federal Railways Network Correction of Misalignment Errors in the Integrated GNSS and Accelerometer System for Structural Displacement Monitoring Mitigation of In-Plane Vibrations in Large-Scale Wind Turbine Blades with a Track Tuned Mass Damper Vortex-Induced Force Identification of a Long-Span Bridge Based on Field Measurement Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1